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Abstract. This paper presents an ongoing interdisciplinary research
project that deals with free improvisation and human-machine inter-
action, involving a digital player piano and other musical instruments.
Various technical concepts are developed by student participants in the
project and continuously evaluated in artistic performances. Our goal
is to explore methods for co-creative collaborations with artificial intel-
ligences embodied in the player piano, enabling it to act as an equal
improvisation partner for human musicians.
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1 Introduction

Many attempts have been made in the last decades to develop interfaces which
allow computers to become actors in musical performances, ranging from direct
control as in digital musical instruments (cf. e.g. Miranda, Wanderley, & Kirk,
2006) to virtual autonomous players with a higher degree of creative agency
(Gifford et al., 2018).

The Sprio Sessions project aims to explore concepts of free improvisation
among humans and machines in different research directions by prototype devel-
opment, different combinations of software modules, and artistic evaluation. To
give the computer-generated musical material in this human-machine collabora-
tion scenario a physical presence comparable to that of other traditional musical
instruments the machine player here acts in an embodied form of a digital player
piano3 (cf. similar approaches e.g. in Brown, 2018, or the marimba-playing robot
improvisor Shimon by Hoffman & Weinberg, 2010) instead of using loudspeakers
for the actual sonic realization. Within this framing of a duo setting consisting of
the player piano controlled by an AI system and a human musician, we are aim-
ing at the exploration of various computational approaches for the interactive
generation of musical material.

3 We use a Steinway & Sons digitally-enabled Spirio-R grand piano, which gave the
project its initial working title that has been retained since then.
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The theoretical-epistemic foundations of our project refer to the concept of
“musical cyborgs”, which assembles the diverse configurations of human-machine
co-creativity in the context of musical performance within the framework of crit-
ical posthumanities (Braidotti, 2016). From this perspective, the setting exam-
ined here can be described as one possible variation of more-than-human sonic
collaborations (Ullrich & Trump, in press). Therefore, the objective is not to sim-
ulate human pianism—even if distinct building blocks and processes involving
machine learning seem to point in this direction—but to establish a relational
aesthetics that encourages genuine machine artifacts and at the same time min-
imises human preselection.

This paper will briefly outline our research design and general methodological
approach, then go into more detail on each of the current research directions,
and give an outlook towards future work.

2 Research Design

The Spirio Sessions project is designed around questions of interactivity in
free musical improvisation with computational systems following Rowe’s (1993)
player paradigm and its constitutive criterion of creative agency (Bown & Mc-
Cormack, 2011). The improvisational setting around the player piano forms
a conceptual framework within which a wide-ranging spectrum of technical
approaches—music information retrieval (MIR), rule-based AI, statistical model-
ing, and neural networks—is to be prototypically explored. The interdisciplinary
research group involved here brings together scholars from interdisciplinary mu-
sic research and computer science, as well as graduate students from computer
science, media computer science, jazz performance and music pedagogy.

2.1 Methods

All newly developed software elements in this project are modular in design
and intended to enable the most flexible combinations between each other. A
Max/MSP patch serves as a hub for the individual modules, which are inte-
grated via virtual MIDI ports and Open Sound Control (OSC). The project uses
an experimental approach and therefore asks for artistic potentials and creative
capacities of different technical concepts within the given setting rather than
looking for an ideal solution. Many of the AI techniques studied so far have
already been used in other computational music generation projects, but often
not in interactive scenarios. Hence, the artistic research (Klein, 2018), carried
out by the participating music students, is a crucial methodological component
for the evaluation of modified software prototypes. Such elements of subjective
assessment commonly used in research on computational systems for music im-
provisation (Gifford et al., 2018, 25) are applied here in systematically recorded
sessions4 after each major development step and in defined parameter configu-
rations.
4 Demo videos of performances using software from the following research directions

are available in Trump (2021).
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2.2 Research Directions

First prototype: Markov Chains, Adaptive Attention, and Arpeggios
During the preparatory phase of the research project, a first prototype operating
with simple Markov chains as elementary building blocks of machine learning
was created. This early experiment was implemented entirely in Max/MSP and
used the extension ml.lib (Smith & Garnett, 2012) to embed 2nd order Markov
chains for pitch progressions modeling. A continuous measure of note density
influences the degree of attention to new input material from a pitch-tracked
audio signal and the addition of randomly selected arpeggios of symmetrical
interval structures (cf. Fig. 1).

Pitch Tracker MIDI Data

Density Measure

MIDI Data to Player Piano

Listen?

Arpeggio Generator

Markov Chain Model

Sampling

Rhythm Generator

Fig. 1: Process flow of first prototype Max/MSP patch

HMM-based Improvisation Building on the statistical approach of the first
prototype, the focus of this subproject is on the investigation of automatically
generated musical improvisation using Hidden Markov Models (HMM). Extend-
ing regular Markov Models the HMM topology is defined by the number of
hidden states, the arrangement of the state transitions, and a set of possible ob-
servable emissions (Jurafsky & Martin, 2020). For musical improvisation, states
and emissions can be assigned different meanings (Marom, 1997), such as notes,
note durations, velocity, intervals, or chords (Simon, Morris, & Basu, 2008). In
HMM training, a distinction can be made whether training is event-triggered,
e.g., after a note is played, or time-triggered, e.g., after each quarter beat. In-
vestigated parameters affecting the training process itself are the window size,
the transition and emission probabilities, as well as the weighting for retraining.
The probabilities can be pre-trained on MIDI data or initialized with specific
distributions such as Gaussian, Discrete, or randomly. It can make a difference
whether the training is performed with a flat start or if retraining algorithms like
Viterbi and EM are applied (Jurafsky & Martin, 2020). For music generation,
it is possible to sample from the HMM or to make a prediction based on an
observed sequence. The number of generated samples and the sample rate will
affect the resulting melody.
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Fig. 2: Client-server architecture for neural network experiments

Neural Networks for Interactive Multitrack Music Generation As part
of a master’s thesis, neural network approaches for the generation of an inter-
active multi-instrument accompaniment with the lowest possible latency have
been tested. The system is implemented using a client-server architecture (cf.
Fig. 2) with a web interface for symbolic MIDI input. For the generation, exist-
ing models, e.g. from the Google Magenta project, were examined and adapted
where necessary. In particular, generative deep learning models such as Varia-
tional Autoencoders (VAE) (Roberts, Engel, Raffel, Hawthorne, & Eck, 2019),
Generative Adversarial Networks (GANs) (Dong, Hsiao, Yang, & Yang, 2017)
and Transformers (Huang et al., 2018) were considered. The MusicVAE model
has turned out to be the most suitable for this purpose and was adopted as the
basis for the implementation. The server provides a REST API so that other
front-end systems can be connected. After the server has generated the accom-
paniment, the data is sent to the front-end and rendered time-synchronously
into MIDI data.

Fig. 4: Steps of the rhythm detector following Bello et al. (2005): (1) Wave-form signal,
(2) Smoothed by convoluting it with a Hann-window w(n) = sin2 πn

N
with frame index

n and window length N , (3) Detection signal with characteristics of rhythmically
important (energetically high, i.e. a dominant peak in the amplitude envelop) beats:
calculated as the discrete derivative s′(n) = s(n) − s(n− 1) of (2), (4) Maxima in (3)
exceeding a certain threshold ε marked as found beats.

Rhythm Detector In order to improve rhythmic synchronization and entrain-
ment (Clayton, Sager, & Will, 2005), a custom implementation for a beat detec-
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tor (cf. Fig. 4) was developed as an additional subproject. We found the window
length N of the Hann-window and the peak threshold ε most crucial to achieving
good detection results, heavily depending on the input instrument. To enable for
realtime processing here, the input audio signal must be processed in suitable
chunks and analyzed in parallel on multiple threads. The detected beats are then
sent out as OSC messages.

Sequence-to-Sequence Neural Networks The goal of this upcoming subpro-
ject is to use sequence-to-sequence neural networks (S2SNN) to model one part
of the interacting musical duo. As a typical example throughout epochs, it will
focus on a duo of a melody (woodwind) and accompanying instrument (piano),
comparing the very structured baroque basso continuo setup with free improvi-
sation. The central question is: Provided symbolic input/output (eg. MIDI), can
a S2SNN generate an accompaniment for a melody and vice versa? Related ques-
tions are: how much context is needed, how can the model anticipate the other
player, how to achieve rhythmic synchronization? The models will be trained
on prerecorded duo performances, potentially leveraging the full context. The
test scenario however will be stream-based, i.e. the model may store history but
can’t look ahead. This work will focus on symbolic data (eg. MIDI), which can
easily be discretized (input) or synthesized (output) via the player piano.

3 Future Work

We can already see that the creative potential for our systems lies less in isolated
software elements than in their intelligent combination and the choice of appro-
priate parameters. In this sense, each new Spirio Sessions subproject expands
the field of possibilities in several new directions. One followup research during
the next phase of the project will further dive into the idea of rhythm-like, rule-
driven music generation techniques. For this, probabilistic and transformational
grammars will be explored in a linguistic appraoch to the process of music gener-
ation (Keller & Morrison, 2007 and Putman & Keller, 2015). Another promising
approach will address the specifics of the piano pedal and examine modeling
techniques for this purpose. In addition, the comparison of the different con-
ceptual designs should also contribute to the desideratum of clearly specified
evaluation methods (Gifford et al., 2018, 32) for such systems. The artistic re-
search in music will extend from the dyadic interaction between human soloist
and machine to more complex collective settings.
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