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Abstract. Generative models enable possibilities in audio domain to
present timbre as vectors in a high-dimensional latent space with Gen-
erative Adversarial Networks (GANs). It is a common method in GAN
models in which the musician’s control over timbre is mostly limited to
sampling random points from the space and interpolating between them.
In this paper, we present a novel hybrid GAN architecture that allows
musicians to explore the GAN latent space in a more controlled manner,
identifying the audio features in the trained checkpoints and giving an
opportunity to specify particular audio features to be present or absent
in the generated audio samples. We extend the paper with the detailed
description of our GANSpaceSynth and present the Hallu composition
tool as an application of this hybrid method in computer music practices.

Keywords: AI-enhanced Music Creativity, Generative systems, AI and
music, hybrid GAN, Composition systems, Audio hallucination.

1 Introduction

The attainment of building machines being able to synthesis and output on
activities that people do is a big part of the AI space, and one of the big reasons
that AI is getting all this interest. But for a variety of reason it might just not
the most interesting problem to work on in a field with a growing demand for
challenging human creativity. The most interesting thing to think about for the
autonomous algorithms, that is now evolving in music-making, is going beyond
the possibilities in exploring creativity in a mutual human-machine cooperation
in which we are aware of what is happening musically and be able to control
the development of musical creativity. Recent developments in autonomous and
generative AI methods present ways and means of realisation of the of human-
machine co-creativity in music (Carnovalini & RodÃ, 2020; Briot & Pachet,
2020). In our current research, we focus on generative systems that comprise
the behaviour of generative AI models and ascribe it to the intrinsic features of
digital musical instruments (Tahiroğlu, Kastemaa, & Koli, 2020, 2021).
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In this paper, we address some issues associated with the generative mod-
els and present our hybrid generative adversarial network (GAN) architecture,
GANSpaceSynth, in detail. GANSpaceSynth generates new audio samples using
features learned from the original dataset and has the ability to specify partic-
ular audio features to be present or absent in the generated audio samples. In
the following sections, we also present our Hallu composition tool as one of the
application of GANSpaceSynth in co-creative computer music practices.

2 Deep Learning Models for Audio Synthesis

Recent advances in image generation have been driven by the development of
generative adversarial networks (GANs)(Goodfellow et al., 2014) and the success
of image GANs sparked interest in adapting the technique to audio generation.
A simple way to do this is to represent audio as a spectrogram image and apply
an existing image GAN model. Engel et al. refined the spectrogram approach in
GANSynth, with improvements to the spectral representation including the use
of instantaneous frequency spectra and mel frequency scale (Engel et al., 2019).

While powerful, such approaches do not make strong use of existing knowl-
edge of signal processing and perception, hampering their efficiency. Engel et al.
discussed these problems in DDSP: Differentiable Digital Signal Processing(Engel,
Hantrakul, Gu, & Roberts, 2020), pointing out phase alignment and spectral
leakage as challenges in the case of GANSynth. They examined an alternative
type of model, known as vocoders or synthesisers, where the neural network is
used to learn synthesis parameters for oscillators that generate the actual audio.
This method was previously limited by the inability to integrate the synthesis
elements into the neural network in order to allow end-to-end training on audio
examples. The authors overcame this problem by introducing a set of differen-
tiable signal processing components and demonstrated efficient and high-fidelity
implementations of timbre transfer as well as extraction and transfer of room
acoustics. Magenta and AIUX at Google recently published a web interface for
the timbre transfer as Tone Transfer (Hantrakul et al., 2020).

GANSynth learns to represent timbre as vectors in a high-dimensional latent
space. Navigating this space along humanly meaningful directions is difficult, and
the musician’s control over timbre is mostly limited to sampling random points
from the space and interpolating between them. Addressing this issue, alternative
ways to interact with the latent space with generative melody models have been
demonstrated (Vogl & Knees, 2016; Roberts, Engel, Raffel, Hawthorne, & Eck,
2018; Zhou, Koyama, Goto, & Igarashi, 2020). Härkönen et al. faced analogous
problems with image GANs and came up with a simple but powerful solution in
GANSpace with Principal Component Analysis (PCA) (Härkönen, Hertzmann,
Lehtinen, & Paris, 2020). PCA can be applied to the neuron activations in an
existing GAN model in order to identify significant directions of change, which
can be turned into editable parameters. They found many of the discovered edits
to be semantically meaningful, improving the interpretability of the models used.
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For example, in face-generating models, edits were found for controlling image
features like head rotation and hair color.

There are other dimensionality reduction techniques used for similar pur-
poses, such as UMAP (McInnes, Healy, & Melville, 2020); however, we have
been motivated by the simplicity of the PCA implementation in our approach to
apply GANSpace to GANSynth. Similarly, related approaches to organizing the
latent space of generative audio models have been proposed using Variational
Autoencoders (VAEs) (Kingma & Welling, 2019). Esling et al. used perceptual
ratings from timbre studies to regularize VAE latent spaces in order to construct
generative timbre spaces, allowing interpolation and extrapolation of instrument
timbres as well as descriptor-based synthesis (Esling, Chemla-Romeu-Santos, &
Bitton, 2018). Tatar et al. proposed another VAE architecture and a graphi-
cal interface for latent timbre synthesis, aiming for reconstruction of arbitrary
audio excerpts rather than just instrument timbres (Tatar, Bisig, & Pasquier,
2020). Our decision to work with GANSynth is motivated by its fast generation
performance, which makes it appealing for real-time applications.

3 GANSpaceSynth Hybrid Architecture Properties

The hybrid architecture is based on the idea that we could simply apply the
GANSpace method to another GAN model (GANSynth). Despite significant
differences between the image and audio domains, we have been motivated by the
generality of the GANSpace technique, and the success of this method applied
to Progressive GAN on which GANSynth is based.

GANSynth is implemented in the Python programming language using the
TensorFlow (Abadi et al., 2016) open-source machine learning library. Tensor-
Flow provides tools for e.g. defining the model’s structure, feeding data into
the model as well as training and generating on both CPUs and GPUs. Like
all GANs, GANSynth is composed of a generator and a discriminator network.
The generator takes as input a 256-dimensional vector z and a number denoting
pitch. These are concatenated to form the input layer, which then feeds into a
stack of upsampling 2D convolutions that generate spectrograms at progressively
higher resolutions. The generator’s output is a spectrogram of size 128 frames ×
1024 frequency bins × 2 channels (amplitude and phase). The discriminator runs
such spectrograms through a stack of downsampling 2D convolutions mirroring
the generator, and produces as output a divergence estimate between real and
generated data. In addition, a pitch classifier tries to predict the pitch label.
The divergence estimate and pitch prediction error are combined to form the
network’s loss function, which is optimized during training (Engel et al., 2019).

The other part of the hybrid architecture, GANSpace, presents a method for
finding significant latent space directions in a trained GAN model (Härkönen et
al., 2020). This is done by sampling a large number of random input vectors and
performing a dimensionality reduction, specifically Principal Component Analy-
sis (PCA), on the activation space of an early layer of the network. In the image
domain, the directions can map to a variety of semantic image features, such as
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viewpoint, aging and lighting of generated faces. The features can be controlled
by moving along these direction vectors. GANSpace uses NetDissect(Bau, Zhou,
Khosla, Oliva, & Torralba, 2017) to hook into the early layers of the network.
NetDissect supports the deep learning frameworks Caffe and PyTorch, but not
TensorFlow, which GANSynth is implemented in. In GANSpaceSynth, we in-
stead created a simple hook mechanism by exposing inner layers to the outside
and adding TensorFlow placeholders to allow editing the layers’ activations. Fig-
ure 1 shows the components diagram of the hybrid architecture.

Fig. 1. The block diagram of the GANSpace method applied to GANSynth model for
generating the principal components list.

Given a trained GANSynth model, we sample random input vectors and
feed them into the network. Using the estimators code from GANSpace, we
compute a PCA of the aggregated activations on an early convolutional layer.
To avoid running out of memory, we split the computation into batches and
use the incremental PCA estimator from Scikit-learn (Pedregosa et al., 2011).
The output of this computation includes the principal components (i.e. a list of
orthogonal directions in the latent space, sorted from most to least significant)
as well as a global mean and standard deviation for each component.

3.1 Organising the Latent Space Using a Dimensionality Reduction

GANSynth’s input vector z is sampled from a spherical Gaussian distribution
and constitutes a point in the model’s latent space as shown in Figure 1. The
latent space essentially functions as a compact representation of timbres learned
during training. The problem of GAN interpretability comes from the difficulty
of understanding the structure of this latent space. With the PCA output from
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GANSpace, it becomes possible to navigate the latent space of a GANSynth
model in a more controlled manner. We form a linear combination of the principal
components, scaled by coefficients given by the musician (defaulting to zero) and
multiplied by the corresponding standard deviations. We then add this to the
global mean to obtain a point to synthesise from. Essentially, we treat the global
mean vector as the center of the space and allow the musician to specify how
far to move from the center along each principal component direction. Because
this computation takes place on a hidden layer of the network, we bypass the
network’s input layer completely, meaning z no longer has any influence on the
sound. Since the input layer also contains the labels for pitch conditioning, a side
effect is that we lose the ability to control pitch. This is a drawback compared
to VAE-based approaches such as (Esling et al., 2018). It may be possible to
design a way to retain pitch control in the GAN setting, however this has not
been a priority in our research. We are mainly interested in using GANSynth
unsupervised, with datasets of arbitrary samples rather than single notes with
a defined pitch, allowing us to skip laborious processes of labeling.

Table 1. Authors’ Interpretation of Perceived Audio Characteristics from PCA Com-
ponents

(−1,−1)
muffled texture

(0,−1)
bright texture

(1,−1)
airy texture

(−1, 0)
quiet muffled texture

(0, 0)
quiet bright texture

(1, 0)
quiet airy texture with
whistling

(−1, 1)
very quiet muffled texture

(0, 1)
very quiet bright texture

(1, 1)
near silence with quiet
whistling

In initial experiments with Magenta’s all instruments model, on the first
convolutional layer and with 4,194,304 samples, we found that the PCA indeed
does reveal some significant directions in the model’s latent space. However, as-
cribing semantic meaning to these is difficult, therefore we also experimented
with other models. The model ct-conversations was trained on recordings of
“KET conversations” performed by Thomas Bjelkeborn and Koray Tahiroğlu,
with all pitch labels set to the same value. The model mostly generates inhar-
monic ambiences and textures. The table 1 lists perceived characteristics of these
sounds from exploring the first two PCA components at specific points on the
plane spanned by the top two principal components.

With the first component, we see an influence on the generated sounds’
brightness and tone, and the second component mainly affects loudness. The
third component has almost no noticeable effect. Significant entanglement does
occur in all the models we have tested and even small movements along a single
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axis can produce more variation than suggested in table 1. We invite readers
to listen to the generated samples1. The entanglement may be due to factors
such as dataset quality, the choice of GAN layer, the number of samples used
for PCA, and the choice of PCA for dimensionality reduction.

3.2 Real Time Audio Synthesis

While Python scripts can be used to generate audio with GANSpaceSynth, our
goal is to bring this work closer to musicians and instrument builders by inte-
grating it with the Pure Data (Pd) visual programming language for audio pro-
cessing. Using the Pyext external, which allows writing Pd objects in Python,
we implemented a Pd interface for generating sounds with GANSpaceSynth.

Pyext previously only had support for the now-obsolete Python 2, so we had
to modify it to support Python 3. This was a major undertaking as the Python
APIs changed significantly between these versions. At the time of writing, our
fork of Pyext can be built on macOS and Linux, but we hope to add Win-
dows support in the future. Our Pd object allows loading a trained model and
PCA components from files, setting coefficients for the PCA components and
generating. Generated audio is written to standard Pd arrays.

Fig. 2. Hallu provides a controlled structure to interpolate between points in latent
space through intermediate points to generate audio samples for the final composition.

4 Hallu Composition Tool using GANSpaceSynth

In addition to the developments of the autonomous AI-terity instrument (Tahiroğlu
et al., 2021), one of the outcomes of this research has been to build a composition
tool around audio deep neural networks. We implemented GANSpaceSynth to
generate hallucinatory audio effects similar to what has been made with other
GAN models in the image domain.

The term ”hallucination” has been used in a few different ways in rela-
tion to machine learning. Face hallucination has been introduced as a term

1 https://tinyurl.com/jemrejrv (Sound samples & their spectrogram images)
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to describe techniques for super-resolution and sketch-photo synthesis of faces
(Wang, Tao, Gao, Li, & Li, 2013). On the other hand, images generated by Deep
Dream showed similarities to biological visual hallucinations (Suzuki, Roseboom,
Schwartzman, & Seth, 2017). Data augmentation using generative models has
been referred to as data hallucination as well (Lin, Wang, Lei, & Chen, 2019).
Common to these definitions is the use of generative models to synthesize images
that were not in the training dataset. While these definitions are closely linked
the term hallucination we use in Hallu composition tool, at the same time we
refer hallucination to the act of exploration of the latent space.

Since GANSynth generates four-second clips of audio, our approach to com-
posing longer pieces involves generating many such clips and stitching them
together. As the figure 2 shows, we pick points in the latent space, interpo-
late between them to compute some number of intermediate points, and for
each point we synthesise the audio corresponding to that point. Our first im-
plementation was relatively simple, because the GANSynth repository already
had examples of how to randomly sample the latent space and how to interpo-
late between these points. The generated hallucinations were essentially random
walks in the latent space. GANSpaceSynth opened up the possibility of more
controlled hallucinations to be part of the composition tool.

To hallucinate with GANSpaceSynth, we now use the PCA components to
specify points in the latent space. The Hallu tool2 consists of a Pure Data patch
interfacing with GANSpaceSynth. First, the musician loads a trained model and
an associated PCA result file. They are then able to add a desired number of
steps. Each step can be edited individually by adjusting sliders corresponding to
the PCA components. These steps constitute the principal points through which
the hallucination will travel. The musician can listen to the sound generated at
the selected point by clicking the preview button. A global settings section allows
specifying the number of interpolation steps between each principal step, as well
as parameters for stitching together the generated samples. These parameters
include sample spacing (the time between playback start of two consecutive
samples), start trim (how much to trim from the start of generated samples) as
well as an amplitude envelope with attack, sustain and release durations for each
sample. Having specified the parameters, the musician can start the generation
process and listen to the generated hallucination once generation is complete.

Given n principal steps and m interpolation steps, Hallu generates n + (n−
1)m distinct points in latent space. We use simple linear interpolation to obtain
the intermediate steps, taking m samples at even spacings. How good the gen-
erated hallucinations sound depends greatly on the data the GANSynth model
was trained on. Using the NSynth dataset resulted in hallucinations which aren’t
very interesting, mainly because the dataset consists of single notes. We trained
a number of GANSynth models on different custom datasets to find out what
kind of models could generate recognisable variations in hallucinations. The ini-
tial problem we faced was that it takes a significant effort to create a good quality

2 Hallu is an open source composition tool https://github.com/SopiMlab/

GANSpaceSynth/



8 Koray Tahiroğlu, Miranda Kastemaa and Oskar Koli

dataset to train GANSynth on. We ended up creating a Python script that takes
longer audio tracks and splits them into 4 second samples, which allowed us to
prepare a diverse sounding datasets. In some trained models, hallucination could
result in diverse sounds in comparison to the original dataset, on the other hand
with other models, generated hallucinations sounded very similar to the original
tracks while still being original in our subjective opinion 3.

5 Conclusions

In this paper, we presented the GANSpaceSynth hybrid method, which con-
tributes to the work in generative systems, in audio domain, that makes it pos-
sible exploring GAN latent space with more awareness of what is happening
musically and having the opportunity to control the development of musical
creativity in a human-musician and AI cooperation. GANSpaceSynth hybrid
method is a novel approach to achieve an unconditional generative model based
on organising the relationship between points in the latent space (audio features)
and the generated audio samples, rather than in random order.

Compared to GANSpace in the image domain, the semantic editing capabili-
ties demonstrated by GANSpaceSynth so far are more limited. In the future, we
intend to refine our approach by further investigating the interaction between
choices of dataset, dimensionality reduction method, layer and sample count.
Nevertheless, the edits we find do give us more control over exploring the range
of sounds generated by GANSynth models.

The approach has now been applied to produce music based on genera-
tive hallucination method as well as to build the AI-terity musical instrument
with autonomous features. We propose Hallu as a platform for experiencing
co-creativity, and in future work we are aiming to reflect other musicians’ ex-
periences with using it. It is in our research interest to explore further creative
strategies for GANSpaceSynth in the use of building autonomous musical in-
struments performed by two musicians sharing the same GAN space, which
may open up new variety of musical demands other than we only had imag-
ined was possible. We have limited our discussions to the controlled interac-
tion in GAN latent space in this paper. An interesting and exciting future may
bring in another focus in our research, towards more structural use of neural
network pruning in GANSpaceSynth to improve the performance of the audio
sample generation on CPU. The open source code of the project is available at
https://github.com/SopiMlab/GANSpaceSynth/.
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