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Abstract. Recent successful latent space models based on Variational
AutoEncoder (VAE) can generate polyphonic music for solo instrument.
Polyphony with multiple tracks is more challenging in many aspects.
Towards this goal, we propose the intermediate task of musical duet
generation. In this setting, it is common to have to deal with two differ-
ent instruments and note overlaps among tracks occur frequently. Un-
fortunately, these meaningful overlaps are discarded by current musical
models. This limitation hinders their ability to generate multi-track mu-
sic. We thus propose two data structures, MergedTree and Hierarchical-
Tree, to overcome this limitation and three models, MergedTree VAE,
SharedHierarchicalTree VAE and HierarchicalTree VAE, which leverage
these data representations to reconstruct musical duets3. We evaluate our
models on Lakh MIDI dataset and compare them to a PianoTree VAE
baseline. Our MergedTree VAE model outperforms the baseline model
on reconstruction scores. In addition, all proposed models are able to
incorporate a statistically relevant ratio of overlaps among tracks.
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1 Introduction

Automatic music composition is a challenging problem in music information
processing. Deep learning techniques have significantly improved the ability of
machines to generate more natural music (Ferreira & Whitehead, 2019; Wu
& Yang, 2020; Wu & Yang, 2020; Curtis Hawthorne & Eck, 2018; Huang et
al., 2018). Variational AutoEncoder (VAE) is an especially promising class for
controllable music generation, yet the polyphonic and multitrack generation is
still non-trivial (Wang, Zhang, et al., 2020). We base our research on a recent
promising polyphonic solo generation model by Wang, Zhang, et al. (2020), and
develop a polyphonic and multitrack generation approach. In this paper, we

3 A demo of reconstructions and interpolations is available at https://adamoudad

.github.io/aimc2021/.
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focus on an intermediate task toward this goal: generating musical duets, and
leave generation with more tracks for future work.

We define a musical duet as music for two instruments. A musical duet
differs in this regard from a musical solo on two main properties. Firstly, two
instrument tracks should be playing at the same time, and secondly, overlaps be-
tween notes are allowed and may occur. The second property makes it different
from chorale generation for example, in which overlaps are usually forbidden. In
our setting, we refer to the two tracks of a musical duet as melody and accompa-
niment. We define an overlapping among instruments as the occurence of notes
with the same pitch being played simultaneously by at least two instruments.
Notes do not need to share the same onset timing, and may overlap on several
timesteps in which case we would count each timestep as different overlaps.

We propose two data structures, MergedTree and HierarchicalTree, for rep-
resenting a musical duet, which can be trivially extended to more tracks. We
train three different architectures, MergedTree VAE, HierarchicalTree VAE and
SharedHierarchical VAE leveraging these two data representations in the musical
duet setting on Lakh MIDI dataset, in addition to a PianoTree VAE baseline. We
demonstrate the statistical relevance of overlaps and the variety of instruments
assigned to either melody or accompaniment tracks in the dataset. Finally, we
propose an objective evaluation of generative models’ ability to reproduce over-
laps between tracks.

2 Related works

Multi-track generation has been addressed by Dong, Hsiao, Yang, and Yang
(2018) using generative adversarial networks, and by Simon et al. (2018) with
variational autoencoder. In addition to their generative power, variational au-
toencoders can be used to control generated music (Akama, 2020; Akama, 2019;
Pati, Lerch, & Hadjeres, 2019; Roberts, Engel, Raffel, Hawthorne, & Eck, 2018;
Wang, Zhang, et al., 2020; Brunner, Konrad, Wang, & Wattenhofer, 2018; Dong
et al., 2018; Tan & Herremans, 2020) and to create smooth musical transitions
by interpolating the variational latent space. A common representation for mu-
sical data is a MIDI-like representation and has been used by Simon et al. (2018)
to generate multi-track music, yet this representation often leads to unsatisfying
generation (Dong et al., 2018; Yang, Chou, & Yang, 2017). On the other part,
the PianoTree representation proposed by Wang, Zhang, et al. (2020) attempts
to address this by using a representation based on the pianoroll representation,
but is unable to represent multi-track scores.

3 Method

Our three proposed models use a variational autoencoder architecture to model
music (Kingma & Welling, 2014). This architecture is explained in section 3.2.
The differences between models come from the underlying data structure they
operate on, which is detailed in section 3.1 and Fig. 1.
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3.1 Data structures for representing multi-track music

The PianoTree data structure proposed by Wang, Zhang, et al. (2020) represents
a musical pianoroll in a tree structure. Leaf nodes of this structure are individual
notes arranged by pitch in ascending order. We extend this representation to
overcome its limitations in the case of multiple tracks. Each track pianoroll is
viewed as a separate PianoTree structure. Tracks are combined in two different
ways.

The HierarchicalTree combines the two PianoTrees by adding a new hierar-
chical layer for tracks. The root node is connected to nodes each corresponding
to one track, which is a PianoTree representation of this track’s pianoroll.

The MergedTree merges the two PianoTrees by first shifting the pitch ranges
of tracks to avoid pitch overlap. In our duet setting, with two tracks, we shift the
accompaniment note pitches by 131, so that a melody pitch ranges between 0 and
127 values while an accompaniment pitch ranges between 131 and 258 values.
Likewise in PianoTree data structure, pitch values 128, 129 and 130 are reserved
for start of sequence (SOS), end of sequence (EOS) and padding (PAD) tokens.
We then merge the melody PianoTree with the accompaniment PianoTree by
appending at each timestep node of the melody PianoTree the leaf nodes of
the corresponding timestep node in the accompaniment PianoTree. We obtain a
data structure as described by Fig. 1. In our code implementation, all remaining
slots for notes at a given timestep are filled with PAD tokens.

These two data structures can be trivially extended to more tracks by re-
peating the process described above which adds new tracks.

Fig. 1: Tree data structures for musical duet representation.
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3.2 Variational autoencoder

The variational autoencoder (VAE ) consists of an encoder qφ(z|x) that approx-
imates the posterior distribution of the latent variable p(z|x) and a decoder
pθ(x|z) that models the reconstruction from a prior normal distribution p(z).

The following objective function is optimized by the model during training.

L(φ, θ;x) = −Ez∼qφ(z|x) log pθ(x|z) + βKL(qφ(z|x)||p(z))

The first term is the reconstruction term and controls the quality of reconstruc-
tions. The second term controls the shape of the latent distribution so that it
matches that of a normal distribution. This constraint ensures sampled latent
vectors in-between embeddings of the ground-truth data produce plausible gen-
erated outputs.

Our implementation of a VAE for music generation follows the PianoTree
VAE proposed by Wang, Zhang, et al. (2020). We embed each note into a 64-sized
vector. The PianoTree data structure is then embedded using a simultaneous
note axis (see Fig. 1) bidirectional gated recurrent unit (GRU, (Chung, Gülçehre,
Cho, & Bengio, 2014)) of hidden size 128. Each timestep is then embedded using
a time-axis (or vertical axis as in Fig. 1) bidirectional GRU of hidden size 256. We
obtain a fixed representation of the input PianoTree which is linearly mapped
to the mean and variance parameters of a multivariate gaussian distribution of
256 variables. Decoding starts by sampling a latent code using this distribution.
Symmetrically to the encoder, a time-axis bidirectional GRU decodes each 512-
sized timestep vectors, followed by a simultaneous note axis GRU which decodes
notes as 256-sized vectors. Finally, a note’s pitch value is decoded with a linear
map and duration is decoded to a multihot vector using a GRU.

3.3 Proposed models

Fig. 2 shows a graphical representation of all models detailed in this section.
Building on the two new data structures detailed in section 3.1, we propose

the three following models.

– The HierarchicalTree VAE assigns a separate autoencoder to each track of
the HierarchicalTree. We first embed the notes of the input musical segment
with a different embedding layer for each track. This embedded Hierarchi-
calTree structure is then fed to the corresponding encoder for each track.
The outputs of the track-specific encoders are combined with a conductor
encoder to obtain a latent code. This embedding vector of the whole musical
segment is decoded by a conductor decoder which assigns to each track de-
coder one embedding vector. Each of these track-specific embedding vectors
is decoded using the corresponding track decoder.

– The SharedHierarchicalTree VAE has the same architecture as the Hier-
archicalTree VAE except that the track autoencoders weights are shared,
resulting in an architecture similar to the proposed hierarchical architecture
of the MusicVAE extended for multi-track by Simon et al. (2018). Similarly
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to the HierarchicalTree VAE, note embeddings fed to the shared autoencoder
are learned separately for each track.

– The MergedTree VAE is a PianoTree VAE operating on MergedTree data
structure instead of the PianoTree data structure. Its embedding layer is
extended to embed additional shifted pitch values of the accompaniment
track.

Fig. 2: PianoTree VAE baseline architecture compared with MergedTree VAE,
HierarchicalTree VAE proposed models. SharedHierarchicalTree VAE shares the
same architecture as HierarchicalTree VAE, but the track encoders and decoders
share weights.

4 Experiments

4.1 Dataset

The Lakh MIDI dataset is a collection of 178,561 MIDI files scraped from the
web (Raffel, 2016). The dataset contains multi-instrument music from a wide
range of musical genres. We extract melody and accompaniment tracks using
midi-miner library (Guo, Simpson, Magnusson, Kiefer, & Herremans, 2020).
This step discards all MIDI files in which anyone of melody and accompaniment
track is missing. This share represents 62,948 files, which is 35% of all the files in
the dataset. Each remaining MIDI file is quantized with a beat resolution of 4,
which corresponds to a quantization step of a 16th note. We convert MIDI files to
pianorolls using pypianoroll (Hao-Wen Dong & Yang, 2018). We restrict the note
pitch range between 30 and 100. Following Wang, Zhang, et al., 2020 we limit the
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Fig. 3: Statistics computed on Lakh MIDI dataset. (a) shows the number of
bars with overlaps compared to the number of bars without overlaps. (b) shows
a histogram of bars with non-zero overlaps, with the number of overlaps in
one bar in horizontal axis and the counted number of bars on vertical axis. (c)
and (d) show the histograms of instrument categories assigned to melody and
accompaniment. The instrument category is inferred using the MIDI instrument
program. The MIDI standard defines 16 different instrument categories which
are piano, percussion, organ, guitar, bass, strings, ensemble, brass, reed, pipe,
synth led, synth pad, synth effect, ethnic, percussive and sound effects.

number of simultaneous notes in a data sample to 16, discarding samples that
do not satisfy these conditions for both melody and accompaniment. We finally
slice each pianoroll into samples of 16 timesteps for one bar and 32 timesteps for
two bars music segments.

In Fig 3, (a) and (b) demonstrate the statistical relevance in the data of
what we refer to as multi-track overlapping problem. From the 5,684,745 pairs
of melody and accompaniment bars, 1,430,727 bars contain overlapping notes,
which is 25.17% as shown on the histogram (a) of Fig 3. The histogram (b) in
Fig. 3 shows a finer view of the number of overlaps found in each bar of the
dataset. We find a frequency of 1.334 overlaps per bar, that is 2.668 overlaps per
2-bar segments in the dataset.

We further study the differences between melody and accompaniment tracks
by counting the different instruments associated with melody or accompaniment.
We consider the instrument categories defined in the general MIDI standard,
which are piano, percussion, organ, guitar, bass, strings, ensemble, brass, reed,
pipe, synth lead, synth pad, synth effect, ethnic, percussive, and sound effects.
We find that 80.1% of the MIDI files in the data associate different instrument
categories to melody and accompaniment. In Fig. 3, (c) and (d) show these as-
sociations. In particular, we note that the preferred category is bass for melody
and chromatic percussion (which contains instruments such as vibraphone and
celesta) for accompaniment. This counter-intuitive predominance of bass cate-
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gory for melody tracks suggests that bass lines are often similar to melody lines
and tend to be confused by the midi-miner classifier.

4.2 Training and evaluation

Table 1: Model evaluation on the reconstruction of 1-bar (top) and 2-bars (bot-
tom) pianorolls after 300k steps of training. Baseline is PianoTree VAE. HT,
SHT, and MT respectively denote HierarchicalTree VAE, SharedHierarchical-
Tree VAE and MergedTree VAE. SHTf refers to SharedHierarchicalTree VAE
with flat conductors and SHTg refers to the same model with GRU conductors.

1-bar models Baseline Ours[HT] Ours[SHTf] Ours[SHTg] Ours[MT]

Onset precision 0.898 0.681 0.779 0.760 0.921
Onset recall 0.858 0.842 0.451 0.844 0.910
Onset F1 0.878 0.753 0.571 0.799 0.915
Duration precision 0.956 0.950 0.890 0.961 0.967
Duration recall 0.971 0.906 0.867 0.958 0.972
Duration F1 0.964 0.928 0.878 0.960 0.969
Overlapping ratio 0(1.334) 1.716(0.382) 16.787(15.453) 1.611(0.277) 1.599(0.225)

2-bars models Baseline Ours[HT] Ours[SHTf] Ours[SHTg] Ours[MT]

Onset precision 0.810 0.214 0.355 0.344 0.851
Onset recall 0.706 0.400 0.277 0.507 0.774
Onset F1 0.755 0.278 0.311 0.410 0.810
Duration precision 0.911 0.799 0.822 0.791 0.934
Duration recall 0.942 0.574 0.754 0.745 0.939
Duration F1 0.926 0.668 0.786 0.767 0.937
Overlapping ratio 0(2.668) 1.950(0.718) 42.963(40.295) 3.096(0.428) 2.592(0.076)
Rel. training speed 1 1.807 1.564 1.728 1.107

We transpose note pitches in each pianoroll by 5 semitones down up to 6
semitones up to augment the dataset. We train all models using Adam optimizer
(Kingma & Ba, 2015) with teacher forcing, and we set the learning rate to 5e−4.
We anneal the β term in front of Kullback-Leibler divergence from 0 to 0.1 on
the first 200,000 training iterations. All models converge after 300,000 training
iterations. Evaluation is computed on 500 batches of 32 data samples each. Table
1 reports evaluation results for all models on 1-bar and 2-bars pianorolls. The
relative training speed of each model is reported by dividing the total training
time of a model by the total training time of the baseline. Onset and duration
metrics are the metrics defined in Wang, Zhang, et al. (2020) and are calculated
on the correctly reconstructed note pitch values and the note duration multihot
vectors. We believe the difference we see in our results compared to PianoTree
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VAE baseline in Wang, Zhang, et al. (2020) comes from the different nature
of datasets used. We use Lakh MIDI dataset which is a more diverse MIDI
collection than the dataset used in Wang, Zhang, et al. (2020). Their dataset
consists of mostly solo instrumental music from POP909 dataset (Wang, Chen,
et al., 2020) and Musicalion website. On the contrary, the data we use has much
more instrumental variety as demonstrated in section 4.1.

We define the overlapping ratio as the mean number of overlaps between
tracks reconstructed by the models. Our goal is to reproduce the overlap calcu-
lated in the dataset in section 4.1 by reconstructing music with an overlapping
ratio sensibly close to the ground-truth, which are 1.334 overlaps for 1-bar and
2.668 overlaps for 2-bar segments. We report the absolute difference between the
overlapping ratio calculated on the reconstruction to these two ground-truth val-
ues. Because the PianoTree VAE baseline has no capability of separating melody
and accompaniment parts, its overlapping ratio is set to 0.

MergedTree VAE consistently outperforms all other models on onset and
duration scores and is able to reconstruct music with the closest overlapping
ratio to ground-truth. This reveals its suitability for overcoming the challenges
in multi-track music. SharedHierarchicalTree VAE with GRU conductors is the
overall best performing model using HierarchicalTree representation. Surpris-
ingly, all HierarchicalTree based models see their performances drop for 2-bar
pianorolls compared to 1-bar pianorolls. The results strongly favor a timestep-
level track hierarchy as described by MergedTree representation, to a bar-level
track hierarchy used in HierarchicalTree based models.

We provide interpolation and generation samples on the demo website at
https://adamoudad.github.io/aimc2021/.

5 Conclusion

We presented three models for generating musical duets MergedTree VAE, Hi-
erarchicalTree VAE and SharedHierarchicalTree VAE. They are built on top of
two data structures which extend PianoTree representation to multi-track mu-
sic. Our proposed MergedTree VAE model outperforms the baseline on all scores
calculated on the Lakh MIDI dataset. Our models can be used to separate tracks
of a pianoroll and generate richer multi-track music with natural overlaps. We
hope that our work opens up new directions for developing more effective data
structures and useful models for polyphonic and multitrack music generation.
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