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Abstract. Live coding, as a practice of computer programming used to 
create music and digital media, represents a novel and relevant form of 
contemporary artistic practice. The notion of automating the process of 
live coding entails interesting philosophical, conceptual, and technical 
questions. While touching upon all these implications, this paper focuses 
on design decisions and technical aspects as responds to artistic 
requirements on such a generative, interactive system intended for 
generating computer code as makeshift music scores. With the existing 
assortment of techniques for algorithmic composition and text generation, 
one of the challenges was selecting the most appropriate approach for the 
task. We noticed a strong interdependence between material (a base 
corpus of source code) and the process (the generative algorithm) which 
motivated a novel, hybrid approach that targeted both the required 
systematization of the corpus and devising a custom algorithmic solution.  

Keywords: Live Coding, Artificial Intelligence, Machine Learning, 
Generative Art, Computer Art. 

1   Introduction 

Often used in performing arts, live coding is the practice of writing program code 
concurrently with its execution that enables artists to interact with the computer 
in real time (Blackwell et al., 2014). While the use of live coding has spread 
throughout different disciplines – from visual arts to dance – it is most 
commonly associated with computer music (Magnusson, 2013). By providing a 
common language between performer and instrument, live coding allows artists 
to interact with computer systems on a deep level. Here, they manipulate and 
synthesize sounds, then compose them into music by eschewing traditional 
notions of "playing", which opens the practice even to musically untrained 
artists. Or, in Thor Magnusson's words (Magnusson, 2013): 

"Live coding is […] the formalization and encoding of music, often for machine 
realization, on the one hand, and the open work resisting traditional forms of 
encoding on the other. Live coding is a form of musical performance that 
involves the real-time composition of music by means of writing code." 
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In the most common scenario (Collins et al., 2003), the musician writes 
program code during a live performance, improvising and creating music based 
on external influences or moods, often resulting in non-deterministic 
spontaneous compositions. When performed in clubs, these compositions form 
events called algoraves (Collins et al., 2014). 

To examine the relationship between live coding and generative algorithms, 
we have created a part performance, part installation work called Anastatica. 
The base of Anastatica is the algorithm that generates lines of code that 
manipulate audio samples and create music. This potentially endless generative 
process is joined by a performer of flesh and blood who improvises and 
alternately plays with and against the generated music. At a certain point, the 
performance begins allowing input from the audience via a web-based interface. 
The audience is given a chance to manipulate the computer-generated code, with 
the choice between augmentation and erosion left to each individual. While 
Anastatica opens a number of philosophical, aesthetic, and conceptual questions 
that we discussed in pervious papers (Pošćić & Kreković, 2020a; Pošćić & 
Kreković, 2020b), the technical aspect of the generative process is the main focus 
of this paper. 

2   Algorithms and code as makeshift scores 

Anastatica contains in itself two strains of influences. On one hand, it draws from 
the work of live coders such as Alex McLean, Nick Collins, Shelly Knotts, Alice 
Eldridge and Chris Kiefer, and Orchestra for Females and Laptops (OFFAL). 
While the music and performances of these musicians pioneered and established 
an aesthetic framework for live coding, their work has since sprung into 
numerous directions, exploring both musical and extramusical innovations of 
live coding, from physical interfaces to internet-aided collaborative practices. As 
such, Anastatica is indebted to their work as it continues canvassing a similar 
aesthetic space (e.g. projecting TidalCycles code on a screen), but also retains 
their sense of research at the boundaries of technologies and techniques in the 
field. 

On the other hand, Anastatica is also heavily influenced by musicians using 
artificial intelligence and generative systems in their work. In particular, this 
refers to musicians and computer scientists who have pioneered the use of AI in 
music outside of academic circles, including Zack Zukowski and CJ Carr's 
Dadabots (Zukowski & Carr, 2018), a SampleRNN-based system which generates 
or "invents" new music based on existing samples. Similarly, Holly Herndon and 
Matt Dryhurst's Proto and James Ginzburg and Paul Purgas's Blossoms (as 
Emptyset) were one of the first albums that employed AI in the creation of 
commercial, club and electronic music. Elsewhere, and most similar to 
Anastatica, Jennifer Walshe's ULTRACHUNK, realized in collaboration with visual 
artist and researcher Memo Akten, is a piece that focuses on the phenomenology 
of AI itself. 
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2.1   Algorithmic manipulation of patterns 

TidalCycles offers the concept of patterns and cycles by providing a language for 
describing heterogeneous sequences (including polyphony, polyrhythms, and 
generative patterns) together with an extensive library of functions for building, 
combining, and transforming patterns (TidalCycles Userbase, 2021). Patterns 
automatically repeated in cycles simplify the coding practice and allowing 
musicians to focus on creating musical content instead of resolving the 
infrastructural question of triggering patterns. Manipulation of patterns in 
TidalCycles is used for generating control messages for SuperDirt, a sampler-
based synthesizer in SuperCollider, or other synthesizers and sound effects via 
Open Sound Control (OSC) and Musical Instrument Digital Interface (MIDI) 
protocols. 

While all the important paradigms of TidalCylces are explained in the 
introductory tutorial (TidalCycles Userbase, 2021), here we emphasize two main 
concepts important for understanding formative design decisions behind the 
generative live coding system. The first one is the notion of parallel connections 
or channels between TidalCycles and SuperDirt. Using 16 connections named 
from d1 to d16, it is possible to produce 16 simultaneous independent patterns. 
These parallel connections are not the only means of producing complexity in 
TidalCycle, as each pattern within a single connection can be composed of 
multiple patterns stacked or sequenced together. However, in the context of 
generative live coding, the existence of parallel connections opened a question of 
whether and how to distribute and interconnect the musical content among 
channels in order to achieve control over the vertical compositional aspect. In 
other words, if patterns in every channel are generated fully independently, 
theoretically any combination of musical contents from different channels can 
appear together which prevents both algorithmic and human control over the 
overall harmonic, polyphonic, and polyrhythmic qualities of the generated music. 
To address this challenge, we proposed a solution based on specific organization 
of the building code blocks that is described later in the paper. 

The second fundamental concept is the paradigm based on patterns and their 
repetitive nature that is inherently associated with specific genres of electronic 
music. In order to make the sonic outcome more distinctive, instead of using the 
predefined set of samples, we created novel sets based on audio recordings of a 
violin and electromechanic piano. These analog, organic and imperfect 
instruments made a deliberate opposition to the rigidity and predictability of the 
algorithm. 

3   Generative live coding 

The main idea behind our work on generative live coding is to bring together 
humans and algorithms on a level playing field providing both organic and 
inorganic participants the common medium for music inscription. By “writing” 
TidalCycles code, the computer is no longer just an object. Instead, it becomes a 
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subject that creates music, working on the same semiotic level as human 
observers and participants. With the code that writes code, the generative 
process becomes transparent to humans. The aspect of translating code into 
music – usually the main functionality of computers in music – becomes a 
corollary. It is the generative part that is key here, set in shapeshifting dynamics 
of antagonistic or complementary interactions. 

One of the requirements on the generative system was to produce consistent 
sonic results that reflect musical ideas of the composer. At the same time, the 
variety in the generated music should be broad so that each performance is a 
unique experience. These apparently opposed expectations lead to an idea that 
the generative system should operate in a way to preserve musical qualities 
determined by the composer on the lower compositional time scales (i.e. timbral 
characteristics of atomic sound objects, sonic textures, and basic musical 
patterns), while introducing sufficient diversity on the higher level (i.e. phrases 
and gestures, musical movements, and overall performances). Such an idea is 
taken into consideration while designing the generative algorithm and the 
solution architecture. 

3.1   Solution architecture 

The first design decision was choosing an approach for generating source code 
among a wide assortment of possible techniques. While the raise of deep 
learning and advancements in natural language processing significantly 
contributed to the subfield of source code generation during the recent years, the 
tendency towards automatic programming is not new (Blazer, 1985). 
Historically, automation did not refer just to source code generation, but to other 
aspects more appropriate for their time: 1) translation of source code written in 
high-level programming languages (Brooker, 1958), 2) improving programming 
efficiency by using software components (Cointe, 2004), and 3) low-code 
development platforms that allow creating application software through 
graphical user interfaces and configuration instead of traditional hand-coded 
computer programming (Sahay et al., 2020). 

Regarding source code generation techniques, the recent surveys (Allamanis 
et al., 2018; Le et al., 2020) provide an insightful overview on both traditional 
approaches (such as domain-specific language guided models, probabilistic 
grammars, n-gram models and simple neural program models) and deep 
learning techniques, some of which (Oda et al., 2015; Tiwang et al., 2019) have 
been applied to code generation with encouraging results. 

While being superior in tasks like code completion, generating code 
comments, and translating source code to pseudo-code, current deep learning 
techniques do not seem to be fully appropriate for generative live coding. The 
first potential drawback is that the task of generative live coding cannot be 
formulated either in terms of code completion or any type of translation from a 
higher-level specification. Instead, the intended functionality is that the 
generative system automatically produces unlimited numbers of code blocks in a 
way to achieve the artistic goals: aesthetic consistency and controlled 
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compositional quality at all musical time scales. Another potential drawback is 
the required amount and diversity of training data that surpass a reasonable 
amount of code that a single composer can consistently prepare in TidalCycles 
using a hermetic set of custom samples. Some strategies such as scraping GitHub 
repositories or weakening requirements on stylistic consistency may simplify 
the dataset collection process, but would jeopardize the overall goal. 

As a solution, we devised and developed a novel, data-driven approach based 
on a Markov chain, a mature and proven model with a long history in algorithmic 
composition. The Markov chain enabled the earliest experiments in formalized 
music during the 1950s (Pinkerton, 1956; Brooks et al., 1957; Hiller & Isaacson, 
1957), but still remained a viable, although limited, technique to model melodies 
and phrases (Pachet & Roy, 2011). Fundamentally, it is a machine learning 
algorithm whose parameters are induced from a corpus of pre-existing 
compositions or performances. The main weakness of this approach is the ability 
of capturing only local statistical similarities, while failing at inducing relations 
on higher time scales. 

For the purpose of generative live coding, we created a Markov model whose 
states are blocks of TidalCycles code from the predefined corpus, while the 
transitions between the states are constructed algorithmically. By developing a 
custom algorithm for determining transition probabilities, we replaced standard 
statistical learning from pre-existing performances with a data-driven approach 
that takes into account the textual content of building blocks and their syntactic 
relations. This way, the generative process does not inherit performative 
characteristics and the compositional structures from pre-existing examples, but 
creates them autonomously following a procedural algorithm controlled by 
several parameters. 

The architecture of our solution, therefore, consists of three components: 1) a 
preprocessing module, 2) the generative process, and 3) the participative 
interface. The preprocessing module takes the whole corpus of code blocks as an 
input and generates a set of Markov models. The generative process works in 
real time during performances or installation. It uses Markov models produced 
by the preprocessing module to recombine lines of code following Markov 
transitions, but it also provides an additional level of performative control and 
indeterminacy. The participative interface is a two-way web interface piped 
directly into the performance core that allows the audience to interact with the 
generative process by curating parts of the generated code, but it is not 
described in more details within this paper. The following sections explain each 
of the system components in more details. 

3.2   Data-driven preprocessing 

The preprocessing module runs on the predefined corpus of code blocks and 
produces multiple Markov chains (one for each channel in TidalCycles) by 
calculating the transition probabilities in a deterministic way. The resulting 
probabilities are closely related to the objective difference between code blocks 
in terms of how many characters have to be changed to obtain one code block 
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from another. This solution favors smaller changes from one block to another in 
the same manner as a human musician during live performances usually 
modifies existing code blocks rather than writes new ones (Kreković & Pošćić, 
2019). 

The reason why the preprocessing module was designed to produce a Markov 
model for every unique connection used in the corpus (up to the maximum of 16 
connections) is the fact that only changes that happen on the same connection 
affect the pattern repeating on that connection. If two successively generated 
blocks of code refer to different connections, the first block will continue 
producing sound and the second one would just additively contribute to the 
sonic content. In order to ensure that the transitioning between states are 
reflected in the generated music, the preprocessing module creates multiple 
Markov chains, one for each connection. The generative process is designed to 
combine these multiple models by travelling through them in parallel creating 
complex, potentially polyphonic and polyrhythmic results. 

The first step of preprocessing is calculating the Levenshtein distance 
between all pairs of code blocks that refer to the same TidalCycles connections. 
The lower distance between two code blocks will lead to a higher transition 
probability between them. Since the Levenshtein distance is a deterministic and 
commutative measure (i.e. the distance between code blocks A and B is the same 
as the distance between B and A), this approach could lead to often looping 
between two most similar code blocks. For that reason, after calculating 
Levenshtein distance among one code block with all the others, the algorithm is 
modified to increase distances to all of those blocks for which the distance to the 
current one has been already calculated. In other words, if the matrix element 
distance(A, B) already exists, the distance(B, A) will be incremented by the 
maximal distance between the code block B and all other code blocks X for which 
distance(X, B) has not been calculated yet. This will ensure that the generative 
process favors new transitions before going to previous states. 

The second step of the preprocessing algorithm is calculating transition 
probabilities. For each code block, the distances to other elements are ranked. If 
the block B is the most similar one to the block A, then it will have the rank 1, 
while the second closest will get the rank 2. The ranks are then used as negative 
exponents to the base. Finally, the results are normalized so that transition 
probabilities from each code block sums to 1. The transitions are permanently 
stored, so that the generative process can reuse them every time it runs. 

3.3   Generative process 

In each step, the generative process outputs one code block by making a 
transition to the next state of the Markov chain of the currently selected 
TidalCycles connection. Pauses between steps have random durations with 
limited upper and lower bound. The process of selecting a next connection is 
based on a unidirectional, cyclic random walk with the gamma distribution. The 
distribution is parameterized in a way that the step size 1 has the highest 
probability, while the larger steps sizes have non-linearly exponentially lower 
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probabilities. For example, if the current connection is #5, the highest 
probability is that the next one will be #6, then #7, and so on. Modulo operations 
ensure that the process works in a cyclic manner. This approach reduces the 
number of repetitions of connections successive steps of the generative process, 
while still maintaining a certain level of indeterminism. 

As the generative process executes their respective Markov models fully 
independently, this approach does not allow a composer to orchestrate selection 
of code for different connections simultaneously. In order to address this 
problem, we opted for organizing the corpus in a systematic way. The 
systematization guideline for Anastatica emerged through iterative trials and 
eventually reflected the desired distribution of code blocks that produce certain 
types of sonic qualities in different connections. For each connection we defined 
an approximate distribution of rhythmic, tonal, and textural contents. Due to the 
independent nature of the algorithm, there are still possibilities of combining 
undesired types of sonic materials, but those possibilities are shaped by the 
compositional process. 

When composing Anastatica, we noticed that the musical evolution is usually 
gradual, as the algorithm tends to transition between syntactically similar blocks 
that result with a sonically similar content. Sudden changes occur, but they often 
happen in one of the connections, while all others continue with their patterns 
mitigating the effect of the change. In order to introduce more diversity on the 
compositional level, besides the Markov chains, the generative process was 
extended with a set of special events. Those are events such as tempo changes, 
hushing all connections simultaneously, hushing one connection, or resetting the 
states in Markov chains. Such events happen in random, yet rare moments and 
contribute to the dynamism of the compositional structure. 

4   Discussion 

The introduction of generative paradigm into live coding results in interesting 
combinations of human and machinic artistic interventions. Firstly, the 
generative process can act as an adversary by pushing the musician or performer 
outside of their comfort zones and pre-learned behaviors, resulting in novel 
forms of music or art (Kreković & Pošćić, 2019). This phenomenon was also 
apparent in Anastatica in which the generative part articulated shape-shifting 
dynamics of antagonistic or complementary interactions between the algorithm, 
human performer and the audience. 

Secondly, the generative process can compose novel music on its own, but 
under the supervision and direction of the programmer or performer. Even if a 
generative process powered by AI and machine learning is treated as a post-
algorithmic manifestation, the need for human influence is immense both in 
terms of the used material and the constructed process. The experience with 
developing the generative system for Anastatica confirmed the striking 
interconnection between those two aspects and revealed a broad scope of 
human interventions in both. The situation would be essentially the same (but 
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different in some implementation details) with any other generative method. For 
example, if we opted for a long short-term memory (LSTM) neural network that 
is capable of autonomously generating text by learning from a given training set, 
we will still need to set its architecture, its parameters, and the training set 
manually. Moreover, the total of 1467 lines and 300 code blocks would be 
insufficient for the LSTM to converge, so the efforts necessary for preparing and 
curating the base corpus would be even more prominent. 

Finally, generative live coding is inherently indebted to well-known AI 
techniques, but it can also serve a vessel for problematizing the various 
dynamics between humans and algorithms in social, artistic, and labor contexts. 
To emphasize this metaphor in Anastatica, the performance is enhanced with the 
participative element that extends the original duopoly into democracy and 
anarchy. The audience is given a chance to manipulate the computer-generated 
code, with the choice between augmentation or erosion left completely to each 
individual. However, as with commercial AI, the freedom of choice is an illusion, 
as the possible choices are formed by the system itself. 

5   Conclusion 

Generative systems are built on assumptions expressed qualitatively or 
quantitatively. Usually, when it comes to generative AI, the assumptions are 
statistical in nature. By making a step backwards from this approach, we opted 
for a different assumption for the generative system described in this paper. The 
idea that textual differences between code blocks should influence the 
transitioning probabilities became the base of the generative process. The 
development of the custom preprocessing algorithm with its iterative 
improvements and fine tuning resulted with a convergence of the results 
towards initial artistic requirements related to aesthetic and conceptual 
characteristics. 

Unveiling different concerns and consequent design decisions, the aim was to 
transparently showcase a creative practice that results with a versatile 
autonomous system, but is less elegant itself. The path was never 
straightforward, as the scope of our iterative interventions expanded both on the 
material and the algorithm. Even though the focus of those interventions are 
shifted in comparison to traditional live coding and that they will be shifter 
further by more advanced forms of AI and other future technologies, the role of 
the human creator is still prominent and necessary. 
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