
Data-Driven Generative Live Coding for Music Creation

Gordan Kreković1 and Antonio Pošćić2

1 Visage Technologies

2 Unaffiliated
1 gordan.krekovic@visagetechnologies.com

2 antonio.poscic@gmail.com

Abstract. Live coding, as a practice of computer programming used to
create music and digital media, represents a novel and relevant form of
contemporary artistic practice. The notion of automating the process of
live coding entails interesting philosophical, conceptual, and technical
questions. While touching upon all these implications, this paper focuses
on design decisions and technical aspects as responds to artistic
requirements on such a generative, interactive system intended for
generating computer code as makeshift music scores. With the existing
assortment of techniques for algorithmic composition and text generation,
one of the challenges was selecting the most appropriate approach for the
task. We noticed a strong interdependence between material (a base
corpus of source code) and the process (the generative algorithm) which
motivated a novel, hybrid approach that targeted both the required
systematization of the corpus and devising a custom algorithmic solution.

Keywords: Live Coding, Artificial Intelligence, Machine Learning,
Generative Art, Computer Art.

1 Introduction

Often used in performing arts, live coding is the practice of writing program code
concurrently with its execution that enables artists to interact with the computer
in real time (Blackwell et al., 2014). While the use of live coding has spread
throughout different disciplines – from visual arts to dance – it is most
commonly associated with computer music (Magnusson, 2013). By providing a
common language between performer and instrument, live coding allows artists
to interact with computer systems on a deep level. Here, they manipulate and
synthesize sounds, then compose them into music by eschewing traditional
notions of "playing", which opens the practice even to musically untrained
artists. Or, in Thor Magnusson's words (Magnusson, 2013):

"Live coding is […] the formalization and encoding of music, often for machine
realization, on the one hand, and the open work resisting traditional forms of
encoding on the other. Live coding is a form of musical performance that
involves the real-time composition of music by means of writing code."

2 Gordan Kreković and Antonio Pošćić

In the most common scenario (Collins et al., 2003), the musician writes
program code during a live performance, improvising and creating music based
on external influences or moods, often resulting in non-deterministic
spontaneous compositions. When performed in clubs, these compositions form
events called algoraves (Collins et al., 2014).

To examine the relationship between live coding and generative algorithms,
we have created a part performance, part installation work called Anastatica.
The base of Anastatica is the algorithm that generates lines of code that
manipulate audio samples and create music. This potentially endless generative
process is joined by a performer of flesh and blood who improvises and
alternately plays with and against the generated music. At a certain point, the
performance begins allowing input from the audience via a web-based interface.
The audience is given a chance to manipulate the computer-generated code, with
the choice between augmentation and erosion left to each individual. While
Anastatica opens a number of philosophical, aesthetic, and conceptual questions
that we discussed in pervious papers (Pošćić & Kreković, 2020a; Pošćić &
Kreković, 2020b), the technical aspect of the generative process is the main focus
of this paper.

2 Algorithms and code as makeshift scores

Anastatica contains in itself two strains of influences. On one hand, it draws from
the work of live coders such as Alex McLean, Nick Collins, Shelly Knotts, Alice
Eldridge and Chris Kiefer, and Orchestra for Females and Laptops (OFFAL).
While the music and performances of these musicians pioneered and established
an aesthetic framework for live coding, their work has since sprung into
numerous directions, exploring both musical and extramusical innovations of
live coding, from physical interfaces to internet-aided collaborative practices. As
such, Anastatica is indebted to their work as it continues canvassing a similar
aesthetic space (e.g. projecting TidalCycles code on a screen), but also retains
their sense of research at the boundaries of technologies and techniques in the
field.

On the other hand, Anastatica is also heavily influenced by musicians using
artificial intelligence and generative systems in their work. In particular, this
refers to musicians and computer scientists who have pioneered the use of AI in
music outside of academic circles, including Zack Zukowski and CJ Carr's
Dadabots (Zukowski & Carr, 2018), a SampleRNN-based system which generates
or "invents" new music based on existing samples. Similarly, Holly Herndon and
Matt Dryhurst's Proto and James Ginzburg and Paul Purgas's Blossoms (as
Emptyset) were one of the first albums that employed AI in the creation of
commercial, club and electronic music. Elsewhere, and most similar to
Anastatica, Jennifer Walshe's ULTRACHUNK, realized in collaboration with visual
artist and researcher Memo Akten, is a piece that focuses on the phenomenology
of AI itself.

Data-Driven Generative Live Coding for Music Creation 3

2.1 Algorithmic manipulation of patterns

TidalCycles offers the concept of patterns and cycles by providing a language for
describing heterogeneous sequences (including polyphony, polyrhythms, and
generative patterns) together with an extensive library of functions for building,
combining, and transforming patterns (TidalCycles Userbase, 2021). Patterns
automatically repeated in cycles simplify the coding practice and allowing
musicians to focus on creating musical content instead of resolving the
infrastructural question of triggering patterns. Manipulation of patterns in
TidalCycles is used for generating control messages for SuperDirt, a sampler-
based synthesizer in SuperCollider, or other synthesizers and sound effects via
Open Sound Control (OSC) and Musical Instrument Digital Interface (MIDI)
protocols.

While all the important paradigms of TidalCylces are explained in the
introductory tutorial (TidalCycles Userbase, 2021), here we emphasize two main
concepts important for understanding formative design decisions behind the
generative live coding system. The first one is the notion of parallel connections
or channels between TidalCycles and SuperDirt. Using 16 connections named
from d1 to d16, it is possible to produce 16 simultaneous independent patterns.
These parallel connections are not the only means of producing complexity in
TidalCycle, as each pattern within a single connection can be composed of
multiple patterns stacked or sequenced together. However, in the context of
generative live coding, the existence of parallel connections opened a question of
whether and how to distribute and interconnect the musical content among
channels in order to achieve control over the vertical compositional aspect. In
other words, if patterns in every channel are generated fully independently,
theoretically any combination of musical contents from different channels can
appear together which prevents both algorithmic and human control over the
overall harmonic, polyphonic, and polyrhythmic qualities of the generated music.
To address this challenge, we proposed a solution based on specific organization
of the building code blocks that is described later in the paper.

The second fundamental concept is the paradigm based on patterns and their
repetitive nature that is inherently associated with specific genres of electronic
music. In order to make the sonic outcome more distinctive, instead of using the
predefined set of samples, we created novel sets based on audio recordings of a
violin and electromechanic piano. These analog, organic and imperfect
instruments made a deliberate opposition to the rigidity and predictability of the
algorithm.

3 Generative live coding

The main idea behind our work on generative live coding is to bring together
humans and algorithms on a level playing field providing both organic and
inorganic participants the common medium for music inscription. By “writing”
TidalCycles code, the computer is no longer just an object. Instead, it becomes a

4 Gordan Kreković and Antonio Pošćić

subject that creates music, working on the same semiotic level as human
observers and participants. With the code that writes code, the generative
process becomes transparent to humans. The aspect of translating code into
music – usually the main functionality of computers in music – becomes a
corollary. It is the generative part that is key here, set in shapeshifting dynamics
of antagonistic or complementary interactions.

One of the requirements on the generative system was to produce consistent
sonic results that reflect musical ideas of the composer. At the same time, the
variety in the generated music should be broad so that each performance is a
unique experience. These apparently opposed expectations lead to an idea that
the generative system should operate in a way to preserve musical qualities
determined by the composer on the lower compositional time scales (i.e. timbral
characteristics of atomic sound objects, sonic textures, and basic musical
patterns), while introducing sufficient diversity on the higher level (i.e. phrases
and gestures, musical movements, and overall performances). Such an idea is
taken into consideration while designing the generative algorithm and the
solution architecture.

3.1 Solution architecture

The first design decision was choosing an approach for generating source code
among a wide assortment of possible techniques. While the raise of deep
learning and advancements in natural language processing significantly
contributed to the subfield of source code generation during the recent years, the
tendency towards automatic programming is not new (Blazer, 1985).
Historically, automation did not refer just to source code generation, but to other
aspects more appropriate for their time: 1) translation of source code written in
high-level programming languages (Brooker, 1958), 2) improving programming
efficiency by using software components (Cointe, 2004), and 3) low-code
development platforms that allow creating application software through
graphical user interfaces and configuration instead of traditional hand-coded
computer programming (Sahay et al., 2020).

Regarding source code generation techniques, the recent surveys (Allamanis
et al., 2018; Le et al., 2020) provide an insightful overview on both traditional
approaches (such as domain-specific language guided models, probabilistic
grammars, n-gram models and simple neural program models) and deep
learning techniques, some of which (Oda et al., 2015; Tiwang et al., 2019) have
been applied to code generation with encouraging results.

While being superior in tasks like code completion, generating code
comments, and translating source code to pseudo-code, current deep learning
techniques do not seem to be fully appropriate for generative live coding. The
first potential drawback is that the task of generative live coding cannot be
formulated either in terms of code completion or any type of translation from a
higher-level specification. Instead, the intended functionality is that the
generative system automatically produces unlimited numbers of code blocks in a
way to achieve the artistic goals: aesthetic consistency and controlled

Data-Driven Generative Live Coding for Music Creation 5

compositional quality at all musical time scales. Another potential drawback is
the required amount and diversity of training data that surpass a reasonable
amount of code that a single composer can consistently prepare in TidalCycles
using a hermetic set of custom samples. Some strategies such as scraping GitHub
repositories or weakening requirements on stylistic consistency may simplify
the dataset collection process, but would jeopardize the overall goal.

As a solution, we devised and developed a novel, data-driven approach based
on a Markov chain, a mature and proven model with a long history in algorithmic
composition. The Markov chain enabled the earliest experiments in formalized
music during the 1950s (Pinkerton, 1956; Brooks et al., 1957; Hiller & Isaacson,
1957), but still remained a viable, although limited, technique to model melodies
and phrases (Pachet & Roy, 2011). Fundamentally, it is a machine learning
algorithm whose parameters are induced from a corpus of pre-existing
compositions or performances. The main weakness of this approach is the ability
of capturing only local statistical similarities, while failing at inducing relations
on higher time scales.

For the purpose of generative live coding, we created a Markov model whose
states are blocks of TidalCycles code from the predefined corpus, while the
transitions between the states are constructed algorithmically. By developing a
custom algorithm for determining transition probabilities, we replaced standard
statistical learning from pre-existing performances with a data-driven approach
that takes into account the textual content of building blocks and their syntactic
relations. This way, the generative process does not inherit performative
characteristics and the compositional structures from pre-existing examples, but
creates them autonomously following a procedural algorithm controlled by
several parameters.

The architecture of our solution, therefore, consists of three components: 1) a
preprocessing module, 2) the generative process, and 3) the participative
interface. The preprocessing module takes the whole corpus of code blocks as an
input and generates a set of Markov models. The generative process works in
real time during performances or installation. It uses Markov models produced
by the preprocessing module to recombine lines of code following Markov
transitions, but it also provides an additional level of performative control and
indeterminacy. The participative interface is a two-way web interface piped
directly into the performance core that allows the audience to interact with the
generative process by curating parts of the generated code, but it is not
described in more details within this paper. The following sections explain each
of the system components in more details.

3.2 Data-driven preprocessing

The preprocessing module runs on the predefined corpus of code blocks and
produces multiple Markov chains (one for each channel in TidalCycles) by
calculating the transition probabilities in a deterministic way. The resulting
probabilities are closely related to the objective difference between code blocks
in terms of how many characters have to be changed to obtain one code block

6 Gordan Kreković and Antonio Pošćić

from another. This solution favors smaller changes from one block to another in
the same manner as a human musician during live performances usually
modifies existing code blocks rather than writes new ones (Kreković & Pošćić,
2019).

The reason why the preprocessing module was designed to produce a Markov
model for every unique connection used in the corpus (up to the maximum of 16
connections) is the fact that only changes that happen on the same connection
affect the pattern repeating on that connection. If two successively generated
blocks of code refer to different connections, the first block will continue
producing sound and the second one would just additively contribute to the
sonic content. In order to ensure that the transitioning between states are
reflected in the generated music, the preprocessing module creates multiple
Markov chains, one for each connection. The generative process is designed to
combine these multiple models by travelling through them in parallel creating
complex, potentially polyphonic and polyrhythmic results.

The first step of preprocessing is calculating the Levenshtein distance
between all pairs of code blocks that refer to the same TidalCycles connections.
The lower distance between two code blocks will lead to a higher transition
probability between them. Since the Levenshtein distance is a deterministic and
commutative measure (i.e. the distance between code blocks A and B is the same
as the distance between B and A), this approach could lead to often looping
between two most similar code blocks. For that reason, after calculating
Levenshtein distance among one code block with all the others, the algorithm is
modified to increase distances to all of those blocks for which the distance to the
current one has been already calculated. In other words, if the matrix element
distance(A, B) already exists, the distance(B, A) will be incremented by the
maximal distance between the code block B and all other code blocks X for which
distance(X, B) has not been calculated yet. This will ensure that the generative
process favors new transitions before going to previous states.

The second step of the preprocessing algorithm is calculating transition
probabilities. For each code block, the distances to other elements are ranked. If
the block B is the most similar one to the block A, then it will have the rank 1,
while the second closest will get the rank 2. The ranks are then used as negative
exponents to the base. Finally, the results are normalized so that transition
probabilities from each code block sums to 1. The transitions are permanently
stored, so that the generative process can reuse them every time it runs.

3.3 Generative process

In each step, the generative process outputs one code block by making a
transition to the next state of the Markov chain of the currently selected
TidalCycles connection. Pauses between steps have random durations with
limited upper and lower bound. The process of selecting a next connection is
based on a unidirectional, cyclic random walk with the gamma distribution. The
distribution is parameterized in a way that the step size 1 has the highest
probability, while the larger steps sizes have non-linearly exponentially lower

Data-Driven Generative Live Coding for Music Creation 7

probabilities. For example, if the current connection is #5, the highest
probability is that the next one will be #6, then #7, and so on. Modulo operations
ensure that the process works in a cyclic manner. This approach reduces the
number of repetitions of connections successive steps of the generative process,
while still maintaining a certain level of indeterminism.

As the generative process executes their respective Markov models fully
independently, this approach does not allow a composer to orchestrate selection
of code for different connections simultaneously. In order to address this
problem, we opted for organizing the corpus in a systematic way. The
systematization guideline for Anastatica emerged through iterative trials and
eventually reflected the desired distribution of code blocks that produce certain
types of sonic qualities in different connections. For each connection we defined
an approximate distribution of rhythmic, tonal, and textural contents. Due to the
independent nature of the algorithm, there are still possibilities of combining
undesired types of sonic materials, but those possibilities are shaped by the
compositional process.

When composing Anastatica, we noticed that the musical evolution is usually
gradual, as the algorithm tends to transition between syntactically similar blocks
that result with a sonically similar content. Sudden changes occur, but they often
happen in one of the connections, while all others continue with their patterns
mitigating the effect of the change. In order to introduce more diversity on the
compositional level, besides the Markov chains, the generative process was
extended with a set of special events. Those are events such as tempo changes,
hushing all connections simultaneously, hushing one connection, or resetting the
states in Markov chains. Such events happen in random, yet rare moments and
contribute to the dynamism of the compositional structure.

4 Discussion

The introduction of generative paradigm into live coding results in interesting
combinations of human and machinic artistic interventions. Firstly, the
generative process can act as an adversary by pushing the musician or performer
outside of their comfort zones and pre-learned behaviors, resulting in novel
forms of music or art (Kreković & Pošćić, 2019). This phenomenon was also
apparent in Anastatica in which the generative part articulated shape-shifting
dynamics of antagonistic or complementary interactions between the algorithm,
human performer and the audience.

Secondly, the generative process can compose novel music on its own, but
under the supervision and direction of the programmer or performer. Even if a
generative process powered by AI and machine learning is treated as a post-
algorithmic manifestation, the need for human influence is immense both in
terms of the used material and the constructed process. The experience with
developing the generative system for Anastatica confirmed the striking
interconnection between those two aspects and revealed a broad scope of
human interventions in both. The situation would be essentially the same (but

8 Gordan Kreković and Antonio Pošćić

different in some implementation details) with any other generative method. For
example, if we opted for a long short-term memory (LSTM) neural network that
is capable of autonomously generating text by learning from a given training set,
we will still need to set its architecture, its parameters, and the training set
manually. Moreover, the total of 1467 lines and 300 code blocks would be
insufficient for the LSTM to converge, so the efforts necessary for preparing and
curating the base corpus would be even more prominent.

Finally, generative live coding is inherently indebted to well-known AI
techniques, but it can also serve a vessel for problematizing the various
dynamics between humans and algorithms in social, artistic, and labor contexts.
To emphasize this metaphor in Anastatica, the performance is enhanced with the
participative element that extends the original duopoly into democracy and
anarchy. The audience is given a chance to manipulate the computer-generated
code, with the choice between augmentation or erosion left completely to each
individual. However, as with commercial AI, the freedom of choice is an illusion,
as the possible choices are formed by the system itself.

5 Conclusion

Generative systems are built on assumptions expressed qualitatively or
quantitatively. Usually, when it comes to generative AI, the assumptions are
statistical in nature. By making a step backwards from this approach, we opted
for a different assumption for the generative system described in this paper. The
idea that textual differences between code blocks should influence the
transitioning probabilities became the base of the generative process. The
development of the custom preprocessing algorithm with its iterative
improvements and fine tuning resulted with a convergence of the results
towards initial artistic requirements related to aesthetic and conceptual
characteristics.

Unveiling different concerns and consequent design decisions, the aim was to
transparently showcase a creative practice that results with a versatile
autonomous system, but is less elegant itself. The path was never
straightforward, as the scope of our iterative interventions expanded both on the
material and the algorithm. Even though the focus of those interventions are
shifted in comparison to traditional live coding and that they will be shifter
further by more advanced forms of AI and other future technologies, the role of
the human creator is still prominent and necessary.

References

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4), 1-
37.

Data-Driven Generative Live Coding for Music Creation 9

Blackwell, A., McLean, A., Noble, J., & Rohrhuber, J. (2014). Collaboration and
learning through live coding (Dagstuhl Seminar 13382). Dagstuhl Reports, 3 (9).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Balzer, R. (1985). A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering, (11), 1257-1268.

Brooker, R. A. (1958). The autocode programs developed for the Manchester
University computers. The Computer Journal, 1(1), 15-21.

Brooks, F. P., Hopkins, A. L., Neumann, P. G., & Wright, W. V. (1957). An
experiment in musical composition. IRE Transactions on Electronic Computers,
(3), 175-182.

Cointe, P. (2004, September). Towards generative programming. In International
Workshop on Unconventional Programming Paradigms (pp. 315-325). Springer,
Berlin, Heidelberg.

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in laptop
performance. Organised sound, 8(3), 321-330.

Collins, N., & McLean, A. (2014, June). Algorave: Live performance of algorithmic
electronic dance music. Proceedings of the International Conference on New
Interfaces for Musical Expression, 355-358.

Hiller Jr, L. A., & Isaacson, L. M. (1957, October). Musical composition with a high
speed digital computer. In Audio Engineering Society Convention 9. Audio
Engineering Society.

Kreković, G., & Pošćić, A. (2019). Modalities of Improvisation in Live Coding.
In XCoAx 2019: Proceedings of the Seventh Conference on Computation,
Communication, Aesthetics and X. (p. 199).

Le, T. H., Chen, H., & Babar, M. A. (2020). Deep Learning for Source Code
Modeling and Generation: Models, Applications, and Challenges. ACM Computing
Surveys (CSUR), 53(3), 1-38.

Magnusson, T. (2013). The Threnoscope. Proceedings of the 2013 International
Conference on Software Engineering.
Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., & Nakamura, S. (2015,
November). Learning to generate pseudo-code from source code using statistical
machine translation (t). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 574-584.

Pachet, F., & Roy, P. (2011). Markov constraints: steerable generation of Markov
sequences. Constraints, 16(2), 148-172.

10 Gordan Kreković and Antonio Pošćić

Pinkerton, R. C. (1956). Information theory and melody. Scientific
American, 194(2), 77-87.

Pošćić, A., & Kreković, G. (2020a). Unboxing the Machine: Artificial Agents in
Music. In XCoAx 2020: Proceedings of the Eight Conference on Computation,
Communication, Aesthetics and X. (pp. 285-298).

Pošćić, A., & Kreković, G. (2020b). On the Human Role in Generative Art: A Case
Study of AI-driven Live Coding. Journal of Science and Technology of the Arts,
12(3), 45-62.

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020, August).
Supporting the understanding and comparison of low-code development
platforms. Proceedings of 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 71-178.

TidalCycles Userbase (2021, March 15).
https://tidalcycles.org/index.php/Tutorial

Tiwang, R., Oladunni, T., & Xu, W. (2019, April). A Deep Learning Model for
Source Code Generation. In 2019 SoutheastCon (pp. 1-7). IEEE.

Zukowski, Z., & Carr, C. J. (2018). Generating black metal and math rock: Beyond
bach, beethoven, and beatles. arXiv preprint arXiv:1811.06639.

