Stochastic Optimisation of Lookup Table
Networks, for Realtime Inference on Embedded
Systems

Chris Kiefer

Experimental Music Technologies Lab,
University of Sussex
c.kiefer@sussex.ac.uk

Abstract. Neural networks running on FPGAs offer great potential for
creative applications in realtime audio and sensor processing, but train-
ing models to run on these platforms can be challenging. Research in
TinyML offers methods for transforming trained neural networks to run
on embedded systems. Further gains might be made by training net-
works directly constructed from lookup tables (LUTSs), the basic element
of FPGA hardware. A novel method, Stochastic Logic Optimisation, is
presented for supervised learning with feed-forward networks of LUTs.
The method is found to significantly improve on the use of both a genetic
algorithm and memorisation in a beat prediction task.

Keywords: FPGA, machine learning, embedded computing

1 Introduction

When using machine learning for creative work, there is sometimes a need to run
models in realtime in resource-constrained embedded systems. Examples might
be sensor processing in a hybrid musical instrument, gesture recognition in a
wearable augmented reality device, machine listening and sound classification
in a sound art installation, or generative control voltage signals in a eurorack
module. It can be a challenge to run more complex models in realtime even
on conventional computers; for example when machine learning systems rely on
parallel processing in GPU pipelines that are naturally optimised for graphics
and struggle with faster audio or sensor signals, highlighting a wider need to
experiment with alternative non-GPU architectures for realtime work. When
working with embedded systems there are often tight memory and data pro-
cessing constraints, measured in KB rather than GB, and in MHz rather than
GHz. There is a need to develop models which are optimised to work with vastly
reduced resources compared to those demanded by conventional deep learning
techniques. Embedded systems have long been a part of the creative toolbox,
with systems such as Arduino and Teensy. These systems use microcontroller
architectures; they are capable of running lightweight machine learning models,
but might struggle with more demanding realtime tasks such as inference with

2 Chris Kiefer

realtime audio or high bandwidth sensor signals. An alternative type of com-
puting architecture, the Field Programmable Gate Array (FPGA), is becoming
more readily available to non-commercial users, with open source toolchains
(Yu, Lee, Lee, Kim, & Lee, 2018) such as Yosys+nextpnr (Shah et al., 2019) and
Symbiflow (Murray et al., 2020), and systems such as Lattice’s ICE40 (Lattice,
2021). Broadly, FPGAs are becoming more openly accesible to artist and maker
communities.

FGPAs are computing systems, reconfigurable at the hardware level, offering
basic building blocks from which customised architectures can be constructed.
For the purposes of creative machine learning, they offer some distinct advan-
tages over microcontroller boards because of their potential to run massively
parallel processes at very high frequencies. This gives them the ability to pro-
cess high frequency data such as audio in realtime. The major constraint of these
systems is that they are more challenging to program and are less user-friendly
compared to embedded systems such as Arduino. Currently, there is a great deal
of research activity around machine learning on FPGAs. This research typically
takes the approach of training models with conventional techniques and then
applying transformation processes so that the model can by run on an embed-
ded system. This project offers a novel alternative approach, by directly training
networks of lookup tables (LUTSs), the basic element of FPGA hardware.

2 Machine Learning for FPGAs

Research in TinyML (e.g. Sanchez-Iborra & Skarmeta, 2020) aims to transform
machine learning models to run on embedded systems. The field has seen signif-
icant successes such as Bonsai (Kumar, Goyal, & Varma, 2017) and XNOR-Net
(Rastegari, Ordonez, Redmon, & Farhadi, 2016), which can optimise models to
run with very low memory requirements and without the need for a floating point
unit. These networks are configured for microcontrollers, but there is also work
on FPGAs. Early work in this field explored evolvable hardware (Thompson,
1996). Contemporary work typically focuses on transforming trained models to
run within FPGA hardware constraints. LogicNets (Umuroglu, Akhauri, Fraser,
& Blott, 2020), LUTNets (Wang, Davis, Cheung, & Constantinides, 2020), Bi-
nary Neural Networks (Murovi¢ & Trost, 2019), TiNBiNN (Lemieux et al., 2019)
and work on Counterfactual Simulation (Chatterjee & Mishchenko, 2020) and
learnable logic (Brudermueller et al., 2020) demonstrate how trained models can
be translated to logic circuits.

An alternative approach is to directly train a network of LUTs. This ap-
proach is appealing because it might result in more competitive use of logic
resources by forgoing high-level abstractions and directly working with LUTs
during training. This factor could be important for working with the current
generation of chips with open-source toolchains, which tend towards lower levels
of computing resources. It could also offer in-situ learning on FPGAs that enable
self-reconfiguration.

Stochastic Optimisation of Lookup Table Networks 3

The basic FPGA building block is the LUT, a configurable logic block typi-
cally with 4 or 6 inputs, a single output, and a set of mappings (a truth table)
to determine the output for each possible set of inputs. LUTs are linked to-
gether with configurable connectivity to form larger logic networks. To facilitate
learning with a network of LUTSs, the training process must optimise the LUT
truth tables, and possibly also the connectivity. In the absence of gradients and
weights, a discrete optimisation process would typically be used for training.
Chatterjee (2018) suggests an incremental memorisation method for LUT net-
works. Currently, this is the only documented method for directly training LUT
networks, although this was designed as an exploration of generalisation rather
than as an optimal training method. Other approaches could be, for example, ge-
netic algorithms (GAs) (e.g. Harvey, 2001) or simulated annealing (Kirkpatrick,
Gelatt, & Vecchi, 1983). As a potential improvement to learning LUT networks
with these approaches, a new algorithm, Stochastic Logic Optimisation (SLO)
is proposed which works directly on LUT truth tables. The efficacy of SLO is
tested in comparison with a GA and Chaterjee’s memorisation method, in a
sequence prediction task.

3 Stochastic Logic Optimisation

The SLO algorithm for optimising logic networks is now described. Full source
code is available from two repositories: (1) A C++ library for running LUT
Networks (with Python bindings)!, (2) A Python notebook with the training
algorithm and code for the experiment below?

Fig. 1. A network of 4-LUTs, with 4 inputs, 1 output, and two hidden layers

SLO optimises a feed-forward network of LUTSs to learn the mappings in
training data. SLO uses LUTs with 4 inputs and a single output (a 4-LUT).
Figure 1 shows an example of 4-LUTSs connected into a network with 4 binary
inputs, hidden layers of 8 and 4 LUTS, and a single binary output. To run the
network, the values of the LUTs in the input layer are set, and then the LUTs are
successively updated layer-by-layer, beginning with the first hidden layer. The
values of the LUT truth tables determines the overall function of the network,
and the architecture can be adjusted to suit task complexity. Connectivity is
limited by the fan-in of the LUTs which can only connect to maximum four

! https://github.com/chriskiefer/liblutnet
2 https://github.com/chriskiefer/SLO_BeatPrediction

4 Chris Kiefer

|
|
|
|
i
i
i
|
T Calculation of potential Selection of truth Post-batch i .

Initialisation > Epoch setup truth table corrections table corrections tests ! Completion

|

|

Batch Processing !

|

|

|

Fig. 2. An overview of the SLO training process

inputs. Connectivity can be configured such that an LUT either shares inputs
with other LUTSs in the same layer or is independent from them.

Algorithm 1 Batch Processing
1: for all batches do

2: allCorrections + ||

3 for all training pairs t do

4: Calculate the network output based on t[input]

5: incorrectNodes < the incorrect output LUTs in comparison to
tloutput]

6: while layer < trainingLayer do

7 corrections < CALCULATELAYERCORRECTIONS(incorrectN odes)

8: tncorrectNodes < the LUTs present in corrections

9: layer < layer — 1

10: end while

11: append(allCorrections, corrections)

12: end for

13: SELECTCORRECTIONS(allCorrections)

14: end for

3.1 Training

Figure 2 shows an overview of the SLO training process. Each item is now
explained in detail. Broadly, the algorithm trains the network by examining
errors in the output of the network for a given input, and then choosing truth
table entries to change which would ensure the correct output given the same
input.

During initialisation, beginning with a network of LUTs NN, the truth ta-
bles in the output layer are randomly initialised with linear probability, and the
truth tables in hidden layers are initialised sparsely such that a single randomly
chosen element in each table is set to 1. During epoch setup, training data is
randomly shuffled, and split into batches. A target hidden layer trainingLayer
is randomly selected for training each epoch, with weighting to give a higher
probability of choosing lower layers. Algorithm 1 describes the management of
batch processing. This process involves the calculation of potential truth

Stochastic Optimisation of Lookup Table Networks 5

Algorithm 2 Search for compatible truth tables

1: function FINDCOMPATIBLETRUTHTABLES(€e)
2: compatibleCombos + ||

3: combos = the list of all possible combinations of e

4: Randomly shuffle combos

5: for all sets of truth tables ¢ in combos do

6: Calculate the values of inputs that correspond to ¢
T if overlapping inputs match then

8: append(compatibleCombos, c)

9: end if

10: end for

11: return compatibleCombos

12: end function

Algorithm 3 Calculation of potential truth table corrections

1: function INPUTBITPATTERN((¢tableSet, LUTS)
2: return bit pattern required as input to LUT'S that would map to ttableSet

3: end function
4: function CALCULATELAYERCORRECTIONS(layer, incorrect N odes)
5: nodeCorrections < ||
6: Split incorrect N odes into clusters G, based on shared inputs
7 for all cluster in G do
8: for all LUT'S in cluster do
9: Calculate a list e of truth table entries that match the target output
10: ttables = FINDCOMPATIBLETRUTHTABLES(€e)
11: inputState < the current input values to LUT S
12: for all Sets of truth tables ttableSet in ttables do
13: p < INPUTBITPATTERN(ttableSet, LUTS)
14: append(dists, hammingDistance(p, inputState)),
15: end for
16: chosenTtableSet < the set corresponding to the lowest value of dists
17: chosenBitPattern — INPUTBITPAT-
TERN(chosenT'tableSet, LUTS)
18: Compare tnputState to chosenBitPattern
19: for all inputNode whose outputs do not match chosenBitPattern
do
20: correction <— the truth table entry in inputNode that would match
chosenBitPattern if flipped
21: append(nodeCorrections, correction)
22: end for
23: end for
24: return nodeCorrections
25: end for

26: end function

6 Chris Kiefer

1,11 3,6,7

Q\ /,G

0 0 0 1

1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 1

Fig. 3. An example of calculating truth table corrections

table corrections for each training item (algorithms 2 and 3). The core of
this process is illustrated in figure 3. There are two LUTs in a cluster (a group
of nodes with co-dependent inputs), both with incorrect outputs. It is calcu-
lated that truth table entries 1 and 11 in LUT A and 3,6,7 in LUT B would
yield the correct output. The system examines the overlapping bit patterns for
these entries and finds combinations (A:1, B:6) or (A:1, B:7) as matches, with
a bit patterns 000111 and 000101. With the intention of making the smallest
adjustment possible, SLO chooses the pattern 000111 as the pattern closest in
hamming distance to the current outputs of the LUTSs in the lower layer. A po-
tential correction is then logged for the LUT marked in red, such that its truth
table would map to a 0 given its current input, and therefore both LUTSs in the
top layer would yield correct outputs.

A list of potential truth table corrections is generated from all training pairs
in the batch. During selection of truth table corrections, a frequency table
of corrections to all truth table entries is constructed, and the most frequent
changes are applied (the top 5% or 10% yield good results). During Post-batch
tests, if the mean batch error is less than the previous minimum error, then a
copy of IN is stored. If the required number of epochs has been reached, then
this copy of IN is returned as the final result.

4 Experiment: Beat Prediction

The performance of SLO was tested in comparison two other methods: (1)
Chatterjee (2018)’s memorisation (MEM) method, as a baseline, and (2) a dis-
crete optimisation method; in this case a GA was chosen, future experiments
will explore more varieties. A task of beat prediction was chosen, representing
the kind of realtime processing this type of network could be suited for. For the
purposes of this experiment the network was simulated in Python rather than
deployed to an FPGA. The trained model could be used as a live improvisation
system that responded to different drumming patterns. This task was designed
to examine the efficacy of SLO for supervised learning, rather than exhaustively
test the limts of SLO.

Stochastic Optimisation of Lookup Table Networks 7

4.1 Method

A dataset of drum patterns was hand-programmed. The dataset consisted of 8
different drum patterns, played with the same 5 instruments, repeated for 4 bars
each at a resolution of 16 ticks per bar. All data was binary, indicating when a
drum was triggered. Models were trained to predict the next pattern of triggers,
given the patterns of triggers in the previous 16 ticks. Experiments were run to
predict the patterns of source and target instruments in varying combinations,
for example to predict the hihat pattern based on the history of the kick drum,
or to predict the cymbal and hihat from the snare (full details in the source
code). Training data for each experiment was split 80:20 into training and test
sets. Experiments were evaluated on classification accuracy.

Both SLO and the GA are stochastic and show some sensitivity to initial
random conditions, therefore the best results were chosen over a number of runs
and iterations within each run. These quantities, along with meta-parameters,
were determined manually to give opportunity to produce the best representative
results. Twenty different experiments were run in this manner, as follows:

Phase 1: Training using SLO Training was run 30 times over 300 epochs,
and the best result was chosen based on test data score. Each run was
initialised with a random choice of layer architecture from the following
structures (indicating the number of LUTs in each layer): [128,64,16,4,1]
[512,256,64,16,4,1], [2048,1024,256,64,16,4,1]. Where the training set had two
outputs, these sizes were doubled. These layers were prepended with an in-
put layer, with size determined by the number of source instruments in the
particular experiment. The choice of structure represented a random search
for the best architecture.

Phase 2: Training with the GA Meta-parameters were manually optimised
for a GA from DEAP library (Fortin, De Rainville, Gardner, Parizeau, &
Gagné, 2012): tournament selection from 3 individuals, 0.1 crossover proba-
bility, 0.1 mutation probability, 0.05 chance of flipping a bit during mutation,
and population size of 50. Individuals were initialised using the same method
as for SLO, and were evaluated as networks with identical structure to the
best network from phase 1. The best result was chosen from ten runs of the
GA with 1000 epochs.

Phase 3: Training with MEM This algorithm is deterministic, with no meta-
parameters, so it was simply run once on the training data, using identical
architecture to phase 2.

4.2 Results

Figure 4 summarises the results. Plot A shows the distribution of test data
scores, with SLO scoring better overall. Significance testing was carried out; the
data had a non-normal (tested using Shapiro Wilk), symmetrical distribution,
with dependent samples, therefore a Wilcoxon signed-rank test was used, show-
ing a significant difference between SLO and the GA (statistic: 7, p=0.002), and

8 Chris Kiefer

A: Test Data Scores B: Score by LUT Count
100
90+ 3 -
H -

v 80 . c - v

o Q

o . [

@ :] .
701 b é
601 e S — .

GA slo MEM 213 426 853 3413 6826

Model LUTs

Fig. 4. Results from the beat prediction task, comparing SLO with a GA and MEM

between SLO and MEM (statistic: 22, p=0.017). Plot B shows the results for
each type of model, grouped by the number of LUTSs in the model. For smaller
model sizes, the three algorithms had similar performance, while for larger mod-
els, SLO outperformed GA and MEM.

5 Conclusions

A new algorithm, SLO, has been presented, which is capable of supervised op-
timisation of a network of LUTSs, with the broader aim of creating lightweight
models that can run in realtime on embedded systems. As the resulting models
are made from LUTSs they can be implemented directly as a logic circuit on an
FPGA. For example, on Lattice ICE devices, LUTs can be directly specified
using the SB_LUT/ primitive, and a network of LUTSs can be implemented with
the addition of clocked flip-flops. The models can also run on microcontrollers
using the C++ library, with the potential to run at high speed as the model
requires only simple arithmetic calculations for memory mappings, and with low
memory requirements (at 2 bytes per LUT, the largest network in the above
experiment could be stored in approximately 13KB RAM).

The experiment with beat prediction revealed SLO to significantly improve
on the GA and memorisation for this task. The results tentatively indicate that
the performance of the algorithm is better for larger networks, and further in-
vestigation is needed to support this.

This experiment has established the basic efficacy of SLO. Future research
will focus on comparison with TinyML systems mentioned earlier, which trans-
late trained neural networks into FPGA logic (e.g. LUTNet), and comparison
with other discrete optimisation methods. Current ongoing experiments focus on
optimisation with continuous numerical training data, questioning how numbers
should be optimally represented. Future work will also investigate creative ap-
plications in sound synthesis and machine listening, and time series processing
using random boolean network reservoirs (Snyder, Goudarzi, & Teuscher, 2012).

References 9

References

Brudermueller, T., Shung, D. L., Laine, L., Stanley, A. J., Laursen, S. B., Dalton,
H. R., ... Krishnaswamy, S. (2020). Making logic learnable with neural
networks. arXiv preprint arXiv:2002.03847 .

Chatterjee, S. (2018). Learning and memorization. In International conference
on machine learning (pp. 755-763).

Chatterjee, S., & Mishchenko, A. (2020). Circuit-based intrinsic methods to
detect overfitting. In International conference on machine learning (pp.
1459-1468).

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C.
(2012, jul). DEAP: Evolutionary algorithms made easy. Journal of Ma-
chine Learning Research, 13, 2171-2175.

Harvey, I. (2001). Artificial evolution: a continuing SAGA. In International
symposium on evolutionary robotics (pp. 94-109).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598), 671-680.

Kumar, A., Goyal, S., & Varma, M. (2017). Resource-efficient machine learning
in 2 kb ram for the internet of things. In International conference on
machine learning (pp. 1935-1944).

Lattice. (2021). i{CE40 LP/HX/LM - Lattice Semiconductor. Retrieved 2021-
04-14, from http://www.latticesemi.com/iCE40

Lemieux, G. G., Edwards, J., Vandergriendt, J., Severance, A., De Iaco, R.,
Raouf, A., ... Singh, S. (2019). TinBiNN: Tiny binarized neural network
overlay in about 5,000 4-luts and 5mw. arXiv preprint arXiv:1903.06630.

Murovi¢, T., & Trost, A. (2019). Massively parallel combinational binary neural
networks for edge processing. FElektrotehniski Vestnik, 86(1/2), 47-53.

Murray, K. E., Elgammal, M. A., Betz, V., Ansell, T., Rothman, K., & Co-
modi, A. (2020). SymbiFlow and VPR: An open-source design flow for
commercial and novel FPGAs. IEEE Micro, 40(4), 49-57.

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Im-
agenet classification using binary convolutional neural networks. In Furo-
pean conference on computer vision (pp. 525-542).

Sanchez-Iborra, R., & Skarmeta, A. F. (2020). TinyML-enabled frugal smart ob-
jects: Challenges and opportunities. IEEE Circuits and Systems Magazine,
20(3), 4-18.

Shah, D., Hung, E., Wolf, C., Bazanski, S., Gisselquist, D., & Milanovic, M.
(2019). Yosys+ nextpnr: an open source framework from verilog to bit-
stream for commercial FPGAs. In 2019 ieee 27th annual international
symposium on field-programmable custom computing machines (feem) (pp.
1-4).

Snyder, D., Goudarzi, A., & Teuscher, C. (2012). Finding optimal random
boolean networks for reservoir computing. In Artificial life conference pro-
ceedings 12 (pp. 259-266).

Thompson, A. (1996). An evolved circuit, intrinsic in silicon, entwined with
physics. In International conference on evolvable systems (pp. 390-405).

10 Chris Kiefer

Umuroglu, Y., Akhauri, Y., Fraser, N. J., & Blott, M. (2020). LogicNets: Co-
designed neural networks and circuits for extreme-throughput applications.
In 2020 30th international conference on field-programmable logic and ap-
plications (fpl) (pp. 291-297).

Wang, E., Davis, J. J., Cheung, P. Y., & Constantinides, G. A. (2020). Lutnet:
Learning fpga configurations for highly efficient neural network inference.
IEEFE Transactions on Computers, 69(12), 1795-1808.

Yu, H., Lee, H., Lee, S., Kim, Y., & Lee, H-M. (2018). Recent advances in
FPGA reverse engineering. Electronics, 7(10), 246.

