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Abstract. Raw Music from Free Movements is a deep learning architec-
ture that translates pose sequences into audio waveforms. The architec-
ture combines a sequence-to-sequence model generating audio encodings
and an adversarial autoencoder that generates raw audio from audio en-
codings. Experiments have been conducted with two datasets: a dancer
improvising freely to a given music, and music created through simple
movement sonification. The paper presents preliminary results. These
will hopefully lead closer towards a model which can learn from the cre-
ative decisions a dancer makes when translating music into movement
and then follow these decisions reversely for the purpose of generating
music from movement.
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1 Introduction

Music-Dance and Dance-Music practices explore artistic possibilities at the in-
tersection of experimental music and contemporary dance. Digital Music-Dance
Instruments (DMDIs) (Strauss, Tatar, & Nuro, n.d.) are a technology where
a dancer controls an interactive music system (Tatar & Pasquier, 2019). As
a multi-modal technology, DMDIs transform embodied gestures into sonic ges-
tures. These technologies have been emerging in the literature, although they are
not explicitly referred to as DMDIs (Erdem, Schia, & Jensenius, 2019; Tragten-
berg, Calegario, Cabral, & Ramalho, 2019).

DMDIs draw from the rich expertise of dancers who explore improvisation
within the practice of Music-Dance. Integrating the dancers’ own intuitions,
techniques, and knowledge about gestural expression into the design of DMDI
is a challenging research task. The Raw Music from Free Movements (RAM-
FEM ) system constitutes the authors’ first attempt to design a DMDI system
by starting from the creative decisions a dancer makes when translating music
into movement and then reverse these decisions for the purpose of generating



2 Daniel Bisig and Kıvanç Tatar

music from movement. An important aspect of RAMFEM’s capability to learn
from and recreate existing movement and music relationships is its operation
in the raw audio domain. Because of this, RAMFEM can be applied to any
recordings of movement and music, capture their correlations, and subsequently
recreate the acoustic characteristics of the music through embodied gestures.

2 Background

Previously, Machine learning (ML) has been applied to multi-modal applications
of dance and music. Although some examples exist for the creation of movement
in response to a given music and for the control of music through movement, no
research has been published on the use of ML for translating dance movement
into raw audio, to the best of the authors’ knowledge. However, previous re-
search exists on the application of ML for the generation of raw audio. All these
approaches form important backgrounds for this paper and are briefly surveyed.

2.1 ML-based Interactive Control of Music

Several examples of applying ML for controlling music through interaction are
in the context of Interactive Machine Learning. This field proposes a new de-
sign paradigm for creating gestural interfaces (Gillies, 2019) that exploits tacit
and embodied knowledge about movement. Many of these interfaces serve the
creation of digital musical instruments (Fiebrink & Caramiaux, 2016). Several
ML-based tools have been released for the artistic community such as Wekinator
(Fiebrink & Cook, 2010) and ml.lib (Bullock & Momeni, 2015). These tools pro-
vide simple ML systems that learn from small training sets, operate in real-time,
and integrate into creative workflows. Because of their simplicity, these ML sys-
tems can not directly generate raw audio. Rather, they are typically employed
for mapping gestural input to control parameters for an external audio engine.

2.2 ML-based Generation of Raw Audio

Two ML architectures commonly used for the creation of raw audio are gener-
ative adversarial networks (GAN) and autoregressive (AR) systems. WaveGAN
(Donahue, McAuley, & Puckette, 2018) is one of the first GANs for modeling
audio waveforms. A more recent example is GANSynth (Engel et al., 2019) which
operates directly on invertible spectra. A further example is MelGAN (Kumar et
al., 2019) which is mainly used to invert mel-spectrograms for speech synthesis
applications. MelGAN generates audio of higher fidelity than previous GANs.

AR systems have been used to create longer audio segments. These systems
typically predict audio waveforms one sample at a time. Pioneering examples in-
clude WaveNet (Oord et al., 2016) and SampleRNN (Mehri et al., 2016). Both
examples show excellent performance on text to speech tasks but struggle to cap-
ture the long-time structure of music. Hierarchical Wavenet (Dieleman, Oord,
& Simonyan, 2018) is an extension of Wavenet that is better suited for music
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generation. It combines a Wavenet with a vector quantified variational auten-
coder (VQ-VAE) (Oord, Vinyals, & Kavukcuoglu, 2017) for separately learning
higher and lower level music structures. JukeBox (Dhariwal et al., 2020) is a re-
cent AR system that can create several minutes long audio waveforms. It uses a
hierarchical VQ-VAE in combination with a transformer architecture. All these
architectures are computationally heavy in training and inference.

2.3 ML-based Translation of Music into Movement

Several studies have explored the application of ML for translating music into
movement. Tang et al. describe an AR system trained on audio and motion
capture recordings of professional dancers (Tang, Jia, & Mao, 2018). Training
focuses on the identification and synchronisation of rhythms in music and dance.
Lee et al. (2019) describe an AR system that is trained on existing music videos.
Their approach also focuses on the synchronisation of rhythms in music and
dance. Ren et al. (2019) employ a GAN that learns from dance videos and tries
to match the rhythm of music and movement and their emotional characteris-
tics. Sun et al. (2020) employ a GAN that is trained on existing dance videos,
while using a similarity metrics between original and generated movement. Qi et
al. (2019) trained different sequence to sequence transducer (Seq2Seq) architec-
tures on music videos. They found a Seq2Seq architecture with self-attention to
perform best. A sophisticated Seq2Seq architecture has been presented by Li et
al. (2020). This architecture combines two transformer models, one for captur-
ing movement and one for capturing musical context. These architecture have
been trained on a wide range of objectives such as beat synchronisation, physical
plausibility, and diversity of movements.

3 Implementation

The current architecture of RAMFEM consists of three components: an adver-
sarial autoencoder (AAE), a sequence to sequence transducer (Seq2Seq), and
an audio concatenation mechanism. The source code, trained models, and audio
and motion capture data required for testing and training are available online 3

4.
AAE improves Variational Autoencoders (VAEs) by replacing the Kullback–Leibler

(KL) divergence term in the loss function with the introduction of discriminator
networks. This eliminates the issues related to the KL-divergence multiplier in
the loss function of VAEs (Kingma & Welling, 2019). The AAE in RAMFEM
encodes and decodes short audio waveforms into and from latent vectors. In its
current implementation, the waveforms are 256 samples long and the latent vec-
tors have a dimension of 32. The AAE consists of four neural networks (Fig. 1,
right side): audio encoder, audio decoder, audio discriminator, prior discrimina-
tor. The audio encoder consists of four 1D convolution (1D-Conv) layers followed

3 https://zenodo.org/record/4656086
4 https://github.coventry.ac.uk/ad5041/RawMusicFromFreeMovements

https://zenodo.org/record/4656086
https://github.coventry.ac.uk/ad5041/RawMusicFromFreeMovements
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by one fully connected (FC) layer. The 1D-Conv layers employ a kernel size of 7
and a stride of 4, and their number of channels doubles with each layer starting
at 32 and ending at 256. The FC layer contains 32 units. The decoder mirrors the
encoder’s layer arrangement and consists of one FC layer followed by four trans-
posed 1D-Conv layers. The audio discriminator distinguishes between original
and reconstructed waveforms. Its architecture is identical to that of the encoder
with the introduction of an additional FC layer at the end that contains one
unit. The prior discriminator distinguishes between latent vectors and random
variables following a true Normal distribution.

The Seq2Seq takes a sequence of poses as input and translates them into
a sequence of audio encodings. These encodings are passed to an audio de-
coder which transforms them into waveforms. The architecture consists of five
neural networks (Fig. 1, left side): sequence encoder, sequence decoder, audio
decoder, audio encoding discriminator, and audio discriminator. The audio de-
coder and audio discriminator are reused from the AAE. The sequence encoder
and decoder are deterministic and don’t possess an attention mechanism. The
sequence encoder consists of three recurrent layers with 512 Long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) units each. The sequence
decoder consists of three recurrent layers with 512 LSTM units each and a last
FC layer with 32 units. After a sequence encoding step, the hidden state of the
sequence decoder is initialized with the hidden state of the sequence encoder,
and the encoding of the first waveform is provided as first input to the sequence
decoder. The audio encoding discriminator distinguishes between original audio
encodings and predicted audio encodings. Its architecture consists of three FC
layers with 32, 32, and 1 units.

The audio concatentation mechanism takes a sequence of waveforms, applies
a Hanning window as amplitude envelope to each of them, and then concatenates
them with a 50% overlap to create the final audio sequence.

Fig. 1. The figure depicts the neural networks that form part of the sequence to se-
quence transducer (left side) and adversarial autoencoder (right side). Outlined shapes
represent groups of layers with the same type of units. Shapes with dark outlines refer
to layers whose weights are changed during Seq2Seq training. Shapes with light outlines
refer to layers with fixed weights.
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4 Dataset

Two different datasets were employed for training, named improvisation dataset
and sonification dataset. The improvisation dataset consists of pose sequences
and audio that have been recorded while a dancer was freely improvising to a
given music. The dancer is an expert with a specialisation in contemporary dance
and improvisation. The music consists of short excerpts of royalty free music
including experimental electronic music, free jazz, and contemporary classic. The
pose sequences have been acquired using the markerless motion capture system
(The Captury) in the iLab at MotionBank, University for Applied Research,
Mainz. The recording is 10 minutes in length which corresponds to a sequence
of 30000 poses. Each pose consists of 29 joints whose relative orientations are
represented by quaternions.

The sonification dataset contains the same pose sequences as the improvisa-
tion dataset. The audio of this dataset was created afterwards, through sonifica-
tion, employing a very simple sound synthesis consisting of two sine oscillators
controlled by the dancer’s hands. The frequency and amplitude of each oscillator
are proportional to the height and velocity of the corresponding hand, respec-
tively. The authors created this dataset to verify the performance of RAMFEM.

5 Training

The training includes two stages where the AAE architecture and Seq2Seq ar-
chitecture are trained in isolation.

For training the AAE, audio was mixed down from stereo to mono, equalized,
re-sampled to 32000 Hz, and split into short overlapping excerpts of 256 samples
in length. The data was split into an 80% training and 20% validation set. The
autoencoder was trained in alternation with its two discriminators. Training
progressed for 300 epochs using the Adam optimizer. The learning rate for the
discriminators was kept constant at 4e-4. The learning rate for the autoencoder
was kept constant at 1e-4 for the first 200 epochs and then reduced to 1e-5 for
the second 100 epochs. The following loss functions were used: Categorical cross
entropy for adversarial loss and mean square error for audio reconstruction loss.

For training the Seq2Seq, the pose sequence was split into overlapping ex-
cerpts with a length of 8 poses, each pose excerpt was paired with a sequence
of 40 audio waveforms, each having 256 samples with 50% overlap to the next
waveform, then the waveforms were encoded into latent vectors. The data was
split into an 80% training and 20% validation set. During training, the weights
of the pre-trained audio decoder and audio discriminator were kept fixed. The
sequence encoder and decoder were trained in alternation with the audio encod-
ing discriminator. Training progressed for 300 epochs using the Adam optimizer.
The learning rate for the discriminators was kept constant at 4e-4. The learning
rate for the sequence encoder and decoder was kept constant at 1e-4 for the first
200 epochs and then reduced to 1e-5 for the second 100 epochs. The following
loss functions were used: Categorical cross entropy for adversarial loss and mean
square error for audio reconstruction loss and audio encoding reconstruction loss.
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A PC running Ubuntu 20.04 and equipped with an Intel i9-10900K CPU
and a single Nvidia TITAN RTX GPU was used for training and inference.
On this machine, training took about 15 hours for the AAE and 5 hours for
the Seq2Seq. For inference with the Seq2Seq and the Decoder part of the AAE
running in sequence, the translation of a pose sequence into 20 seconds of audio
took about 130 seconds.

6 Results and Discussion

Examples illustrating the capabilities and shortcomings of the trained models
are provided online5. The capability of the AAE to encode and reconstruct au-
dio waveforms was evaluated qualitatively by comparing the original and recon-
structed audio (Fig. 2, left and middle column). The comparisons show that the
model reconstructs audio below 1000 Hz. Beyond this frequency, some spectral
content is lost. The sonification dataset doesn’t contain frequencies above 800
Hz, so the original and reconstructed audio are almost indistinguishable. For the
improvisation dataset, the loss in high frequency content is clearly perceivable.

Fig. 2. The figure depicts log-frequency power spectrograms of the original audio (left)
and audio reconstructed by the adversarial autoencoder (middle) and the sequence to
sequence transducer (right). The audio is part of the sonification (top) and improvisa-
tion (bottom) datatsets.

The results obtained from training the Seq2Seq were more diverse. Two types
of qualitative evaluations have been conducted: a comparison between the orig-
inal and predicted audio using pose sequences from the training dataset (Fig. 2,
left and right column), and a comparison between the predicted audio and a
visual rendering of the pose sequences that are not from the training dataset.

The Seq2Seq trained on the sonification dataset generated audio that is
acoustically similar to the original audio. The authors observed these results

5 https://zenodo.org/record/4656044

https://zenodo.org/record/4656044
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with pose sequences from the training dataset, and also with pose sequences
outside of the training dataset. Unfortunately, the quality of the predicted au-
dio is low and includes noise, clicks, amplitude fluctuations, and dominant low
frequencies. When the Seq2Seq was provided with pose sequences that were not
in the dataset, the model generated audio that maintains the original acoustic
characteristics. Interestingly, the model also preserved the original correlation
between movement and music generating frequency sweeps as the hands change
their height and changing amplitude in proportion to the velocity of the hands.

The results are similar for the Seq2Seq trained on the improvisation dataset
when using pose sequences from the training dataset as input. The predicted
audio is of low quality but acoustically similar to the original and the correlation
between movement and audio is preserved. When the Seq2Seq was provided
with pose sequences that were not in the dataset, the results were more difficult
to interpret. Some of the acoustic elements from the original audio are still
present but appear to lack a clear temporal structure. Some correlations between
movement and audio are occasionally perceivable but only during moments when
the limbs travel fast and far.

There are at least two takeaways from these findings. The lower quality of
audio generated by the combination of Seq2Seq and AAE compared to the AAE
alone indicates that it is inadequate to use the same audio reconstruction loss
in both cases. The weak and likely inconsistent correlation between movement
and music during free improvisation is likely one reason for the lackluster perfor-
mance of the Seq2Seq trained on the improvisation dataset when provided with
novel pose sequences as input. Both these issues are addressed in section ( 7).

7 Conclusions and Future Directions

It is encouraging that RAMFEM grasps some of the acoustic properties and
correlations between movement and music with its current simple architecture.
The authors plan to continue this research along three trajectories: experimen-
tation with additional datasets, extended evaluation including interviews with
dancers, and improvements to loss functions and model architectures.

Currently, the datasets used for training cover two extremes: very simple
music with an equally simple movement correlation versus complex music with
a possibly inconsistent movement correlation. It’s worthwhile to create new
datasets that lie in between these two extremes. A first group of datasets will be
based on more sophisticated sonifications but maintain a simple correlation with
movement. These datasets will be useful for verifying further iterations in the
ML architecture design. A second group of datasets will be based on recordings
of dancers improvising in a more controlled manner to music. This involves for
each recording working with a subset of music and improvisation principles that
are proposed by the dancers and subsequently maintained.

So far, evaluation has been conducted by the authors themselves. It is planned
to incorporate the dancers’ feedback into the evaluation. In particular, the eval-
uation of the generated music will take into account the dancer’s reported prin-
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ciples of relating movement to music. It will be interesting to see which of these
principles are learned by the models, and if the models expose some principles
that the dancer wasn’t initially aware of following.

The current model architectures and loss functions have been chosen for
their simplicity. Changing the audio reconstruction loss will likely improve the
quality of the audio generated by the Seq2Seq. For comparing waveforms, loss
functions based on Differentiable Time Warping (Cuturi & Blondel, 2017) or
Earth Mover’s Distance (Arjovsky, Chintala, & Bottou, 2017) have been sug-
gested (Purwins et al., 2019). Alternatively, audio reconstruction loss could
be based on criteria that are better aligned with human auditory perception
(Ananthabhotla, Ewert, & Paradiso, 2019)(Manocha et al., 2020)(Steinmetz &
Reiss, 2020)(Wright & Välimäki, 2020).

The 1D-Convolutions that form part of the AAE could be replaced by differ-
entiable digital signal processing (DDSP) components (Engel, Hantrakul, Gu, &
Roberts, 2020). By integrating DDSP components directly into the AAE, it is
endowed with a stronger inductive bias for audio and will therefore likely require
fewer trainable parameters, generate audio of better quality, and exhibit better
computational efficiency. This last aspects is crucial for making the application
of the architectures suitable for real-time interactive music creation scenarios.

Another modification concerns the length of the time window of Seq2Seq
inputs. Sonification and improvisation situations have different requirements
with respect to timing. Movement sonification should typically respond instan-
taneously to movement whereas for improvisation, a longer time window is re-
quired to conduct a perceptual integration of events (Wittmann & Pöppel, 1999)
(Malloch et al., 2005). For this reason, the Seq2Seq architecture likely needs to
be modified to predict longer sequences. Candidates are Seq2Seq architectures
with attention (Bahdanau, Cho, & Bengio, 2014)(Luong, Pham, & Manning,
2015) or transformer architectures (Vaswani et al., 2017).

To summarize, there is still a long way to go towards the goal of creating a
tool that captures some of the creative decisions a dancer makes when translating
music into movement and then imitate these decisions for the purpose of gener-
ating music from movement. While the results obtained so far are rudimentary,
they indicate that sequence to sequence transducers combined with raw audio
generation techniques are promising candidate architectures for this task.
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